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Abstract

A macroscopic model for highly compacted expansive clays composed of a charged solid phase saturated by a binary

monovalent aqueous electrolyte solution is derived based on a rigorous scale-up of the microstructural behavior. The

homogenization technique is applied to propagate information available in the pore-scale model to the macroscale.

Macroscopic electrokinetic phenomena such as electro-osmotic flow driven by streaming potential gradients, electro-

phoretic motion of mobile charges and osmotically induced swelling are derived by homogenizing the microscopic

electro-hydrodynamics coupled with the Nernst–Planck and Poisson–Boltzmann equations governing the flow of the

electrolyte solution, ion movement and electric potential distribution. A notable consequence of the upscaling proce-

dure proposed herein are the micromechanical representations for the electrokinetic coefficients and swelling pressure.

The two-scale model is discretized by the finite element method and applied to numerically simulate contaminant

migration and electrokinetic attenuation through a compacted clay liner underneath a sanitary landfill.
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1. Introduction

Electrochemical interaction between colloidal particles and an aqueous solution is a central subject in

colloid science. This phenomenon is typical of expansive media including clays, shales, polymers gels,
corneal endothelium and connective biological tissues. Clay minerals are extensively used in a wide range of

applications. They are a key component in the formulation of ceramic products and drilling fluids. They are

widely distributed in the earth�s crust and play a crucial role in many aspects of nutrition on earth. Swelling
of smectitic clay soils also have undesired consequences when they heave upward upon hydration (or shrink

upon desication) causing damage to the foundations of buildings. Shales have been responsible for many

wellbore instability problems. Due to their low hydraulic conductivity, plasticity, swelling and adsorptive
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capacity for contaminants, bentonitic based compacted clays have been used as sealing materials to inhibit

the migration of contaminants to the environment. In order to understand the effects of the complex

physico-chemical interaction of compounds with the clay surface and their correlation with the macro-

scopic response of the clay buffer it becomes essential to develop accurate macroscopic constitutive models
capable of capturing and representing in an averaged fashion the intriguing and challenging microscopic

features inherent to the physical–chemical interactions between the macromolecules and interlayer water.

Each smectitic clay mineral is a 2:1 layer composed of an octahedral aluminia sheet sandwiched between

two silica tetrahedral sheets forming an unit layer. The units are stacked together to form what is known as

the crystal lattice. An important property inherent to many colloidal clay minerals is the negative charge of

their surface which is a consequence of the isomorphous substitutions of certain atoms of their structure

and the presence of imperfections within the interior of the crystal lattice. The negative potential is com-

pensated by the adsorption of cations on the surface forming the inner compact layer commonly referred to
as the immobile Stern layer. Nevertheless the majority of the excess of positively charged counter-ions are

located in the electrolyte aqueous solution externally to the crystal forming an outer diffuse layer composed

of mobile charges. Together with the fixed charged groups of the solid matrix these ions form the so-called

electrical double layer (e.d.l.). The equilibrium structure of completely dissociated electrolytes around the

colloids is calculated by classical electrostatics, where charge distribution and electrical field are governed

by a Poisson–Boltzmann equation (see e.g. Hunter, 1994; Olphen, 1977).

When advected by the streaming velocity of the fluid, the excess in mobile charge population in the

counter-ion atmosphere leads to macroscopic observed electrokinetic phenomena such as streaming cur-
rents, resulting from the influence of fluid movement upon charge flow. Moreover, to conserve charge, the

movement of the net charge generates an electric potential, often referred to as streaming potential, which

gives rise to other macroscopic electrokinetic phenomena. The spatial variability of this quantity engenders

electrophoretic movement to the mobile charges inducing a conduction Ohmic current which opposes the

streaming current and consequently slows down the counter-ions of the diffuse double layer. Due to the

viscous drag interaction, the ions pull the liquid with them resulting in a concomitant electro-osmotic

seepage flow opposing the pressure-gradient driven flow. This electrokinetic coupling has been commonly

referred to as the electro-viscous effect as its overall influence upon the flow is usually treated through an
increase in the viscosity of the liquid (see e.g. Ren et al., 2001; Hunter, 1981; Sherwood et al., 2000). In

addition to electrokinetic phenomena, flow driven by chemical-osmotic effects (gradient of the Nernst

potential) is also manifested particularly when the salinity varies spatially (Gu et al., 1998a).

Electrokinetic and chemical-osmotic effects are also manifested in the appearance of physico-chemical

stresses in the solid phase which cause the expansion/shrinking of the clay lattice. When dry smectite is

placed in a moist atmosphere, the montmorillonite superimposed layers are available for hydration and

cation exchange by uptaking water in the interlayer. Swelling is the moving apart or disjoining of the clay

particles until they reach their equilibrium separation under a certain overburden pressure (Derjaguin et al.,
1987; Israelachvili, 1991). Macroscopically, the overburden pressure that must be applied to a saturated

mixture of clay and interlayer water to keep the layers from moving apart is the experimentally observed

swelling pressure (Low, 1987).

During the past few decades a significant amount of research has been developed toward the derivation

of models capable of capturing coupled electro-chemo-hydro-mechanical effects in expansive porous media.

In addition to the classical phenomenological approaches developed at the macroscale (see e.g. Philip, 1969;

Smiles and Rosenthal, 1968; Kim et al., 1992), coupling phenomena can naturally be described within the

framework of the Mixture Theory and Thermodynamics of Irreversible Processes. In this approach, the
interaction between matter flux, electric charge and chemical osmosis are typical phenomena which can be

properly embedded in the framework of Onsager�s reciprocity relations (see e.g. Lai et al., 1991; Huyghe
and Janssen, 1997; Gu et al., 1998a,b; Heidug and Wong, 1996; Hueckel, 1992b; Murad, 1999; Mow et al.,

1998; Levenston et al., 1998; Bennethum et al., 2000; Zhou et al., 1998).
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Despite the widespread use of non-equilibrium thermodynamics and Onsager�s reciprocity relations in
the macroscopic modeling of electro-chemo-mechanical coupling phenomena, to the authors knowledge

very limited accomplishments have been achieved toward the incorporation of the morphology and clay

microstructure in the macroscopic model. As mixture theoretic approaches are directly conducted at the
macroscale, the complex microstructural solid–fluid interactions are represented in an averaged fashion by

the electrokinetic coefficients whose magnitudes are usually obtained seated on experimental evidence. On

the other hand it has been advocated that the clay microstructure plays a paramount importance in many

physico-chemical aspects observed at the macroscale. For example, it is well known that the swelling

pressure is strongly dictated by particle orientation and anisotropy (Anandarajah, 1997). Moreover, some

discrepancies between the constitutive relation for the macroscopic swelling pressure and its microscale

counterpart, commonly referred to as Derjaguin�s disjoining pressure (Derjaguin et al., 1987) have been
observed. Although this latter microscopic quantity has incorporated both chemico-osmotic and Maxwell
stresses (Derjaguin et al., 1987; Dahnert and Huster, 1999), the dependence of the macroscopic swelling

pressure on salt concentration has not incorporated similar effects, being commonly identified with the

macroscopic osmotic pressure (see e.g. Barbour and Fredlund, 1989).

Furthermore very little information has been available to identify some of the macroscopic electrokinetic

coefficients. For instance, when the porous medium is composed of a bundle of capillary tubes with di-

ameter large compared to the thickness of the e.d.l., the electro-osmotic permeability has been identified as

proportional to the zeta potential (the electric potential in the plane of shear which delimits the domains

occupied by the fixed and mobile charges) in terms of the Helmholtz–Smoluchowski model (see e.g. Shang,
1997; Hunter, 1981; Coelho et al., 1996). However, very little is known on the behavior of this coefficient

when the Helmholtz–Smoluchowski theory is no longer valid, for example for a random pore geometry, or

even when the diameter of the tubes is of the order of the Debye�s length. In this latter case extensions of the
Helmholtz–Smoluchowski formula have been proposed based on empirical correction factors aiming at

capturing the influence of the overlapping between the e.d.l. upon the magnitude of the electro-osmotic

permeability (Hunter, 1981).

The aim of the paper is to derive a macroscopic model for compacted swelling clays capable of estab-

lishing a precise correlation between the macroscopic parameters and microscopic electro-hydrodynamics.
The microscale governing equations consist of the modified Stokes flow coupled with Nernst–Planck/

Poisson–Boltzmann equations (Samson et al., 1999) to describe the movement of the electrolyte solution,

ion transport and local electrostatics within the fluid. Assuming local periodicity and scale separation, we

then adopt the homogenization procedure (Sanchez-Palencia, 1980) to derive macroscopic equations via

formal application of matched asymptotic expansion techniques. Among other effects, a notable feature of

the homogenization procedure is that it provides the correct physics underlying the magnitude of each

macroscopic electrokinetic parameter. Such information is carried out by solving unit cell problems which

furnish knowledge on the microstructural behavior of the swelling medium. To the authors opinion, this
enhanced information may be of utmost importance in providing complementary information to validate

experimental data.

The two-scale model is applied to describe chemo-mechanical induced consolidation of a clay liner

underneath an engineered landfill. The fully coupled non-linear macroscale model is discretized by the finite

element method. Simultaneously the microscopic behavior is incorporated by solving the local unit cell

problems for a given idealized stratified microstructure. The solution of the local problems is sought at each

step and used to provide updated information on the macroscopic electrokinetic coefficients and swelling

pressure. Numerical results illustrate the coupling between the migration of leachates through the com-
pacted clay liner and changes in porosity and permeability due to the suppression of the e.d.l. within the fine

structure as the concentration of the contaminant increases in time. Further, numerical results also illus-

trate the effects of the electro-osmotic attenuation upon fluid flow which is depicted in terms of the spatial

variations of the streaming potential.
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2. Microscopic model

At the microscale we consider an uniformly negatively charged compacted montmorillonite saturated by

a continuum dielectric aqueous solution with binary symmetric electrolytes Naþ and Cl�. The solvent is
considered a dilute solution with the ions treated as point particles at infinite dilution such that steric and

hydration effects are neglected. In what follows we begin by presenting the micromechanical model de-

veloped in Moyne and Murad, 1999, in press governing fluid flow, ion transport, electric potential distri-

bution and particle deformation. Subsequently, we exploit a decomposition of the electric potential

proposed in Sasidhar and Ruckenstein (1981, 1982) and Bike and Prieve (1992) which leads to the ap-

pearance of the streaming potential. We then exploit this decomposition and rephrase the governing

equations in a more appropriate form which is capable of capturing phenomena driven by streaming po-

tential gradients, such as macroscopic electro-osmostic flow in Darcy�s law and the electrophoretic mi-
gration of the ions.

2.1. Electrostatics

Let Xf and Xs be the microscopic domains occupied by the fluid and solid and let C denote the common
interface. Further let fcþ; c�g and fU;Eg designate the pairs of molar concentrations of cations/anions and
electric potential/electric field respectively. In classical electrostatics U and E are governed by the Poisson
problem (see e.g. Landau and Lifshitz, 1960)

~ee~ee0$ � E ¼ q;
E ¼ �$U in Xf ;

�
ð1Þ

where ~ee0 and ~ee are the vacuum permittivity and the relative dielectric constant of the solvent and q is the net

charge density. Denoting F and z the Faraday constant and the valence (z ¼ zþ ¼ �z� for symmetrical
covalent electrolytes), by definition q is the product between the molar charge and the concentration dif-
ference between cations and anions, i.e. q 	 zF cþ � c�ð Þ.

2.2. Modified stokes problem

Assuming the electrolyte solution incompressible and newtonian, the viscous flow is perturbed by a body

force term of Coulomb type qE which governs locally the viscous interaction between the ions and the fluid
(see e.g. Eringen and Maugin, 1989). Denoting lf , v and p the viscosity, velocity and thermodynamic

pressure, the modified Stokes problem reads

lfMv� $p ¼ �qE ¼ q$U;
$ � v ¼ 0 in Xf ;

ð2Þ

where gravity, convective and inertial effects have been neglected. The above momentum balance can also

be rephrased in terms of the Cauchy stress tensor of the electrolyte solution rf as

$ � rf ¼ 0 in Xf ;
rf ¼ �pI þ 2lfEðvÞ þ sM;

ð3Þ

where I is the unit tensor, EðvÞ the symmetrical part of $v and sM is the Maxwell stress tensor (Landau and

Lifshitz, 1960)

sM 	 ~ee~ee0
2
2E
�


 E � E2I
�

ð4Þ
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with 
 denoting the tensorial product between vectors. From (1) and (4) one may easily note that

$ � sM ¼ qE.

2.3. Movement of the ions

Denote D� the binary water–ions diffusion coefficients, T the absolute temperature (assumed constant)

and R the universal ideal gas constant. The convection–diffusion equations governing ion transport are

oc�

ot
þ $ � ðc�vÞ � $ � D�c�

RT
$l�

� �
¼ 0; ð5Þ

where lþ and l� are the molar electrochemical potentials of cations and anions which under the dilute

solution approximation are given as (see e.g. Callen, 1985; Lyklema, 1993)

l� 	 �zFU þ RT log c�: ð6Þ
Denoting U ¼ FU=RT the dimensionless electric potential and assuming monovalent ions ðz ¼ 1Þ, from (6)
we have

1

RT
$l� ¼ $c�

c�
� $U: ð7Þ

Further, using (7) in (5) we obtain the Nernst–Planck equation (Samson et al., 1999)

oc�

ot
þ $ � ðc�vÞ ¼ $ � D� $c�

��
� c�$U

��
¼ $ � D� expð

�
� UÞ$ c� expð

�
� UÞ

��
: ð8Þ

The r.h.s. of (8) shows that ion diffusion is governed by the sum of a Fickian term and an electrophoretic

component which governs the movement of the ions under the effects of the electric field.

2.4. Deformation of the solid particles

Assume that the clay particles are linear elastic and isotropic with Lam�ee constants ks and ls. Denoting u
and rs the displacement and stress tensor of the clay particles, the classical elasticity problem reads

$ � rs ¼ 0 in Xs;
rs ¼ ks$ � uI þ 2lsEðuÞ: ð9Þ

2.5. Boundary conditions

Denote n the unit normal exterior to Xf and let r < 0 be the fixed surface charge of the solid particles.
Considering C an impervious solid–fluid interface, together with the no-slip condition, continuity of the

normal component of the stress tensor, and the relation between the electric field and surface charge density

we have the following boundary conditions

D�c�$l� � n ¼ 0; v ¼ ou

ot
on C;

rsn ¼ rfn; ~ee~ee0E � n ¼ �r;
ð10Þ

where r and q are related through the overall electroneutrality conditionZ
Xf

qdXf ¼ ~ee~ee0

Z
Xf

$ � E dXf ¼ ~ee~ee0

Z
C
E � ndC ¼ �

Z
C

rdC: ð11Þ
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3. Alternative microscale formulation

By invoking the classical results of electrokinetics governing flow and charge transport in capillary tubes

(see e.g. Gross and Osterl�ee, 1968; Fair and Osterl�ee, 1971; Sasidhar and Ruckenstein, 1981, 1982; Yang and
Li, 1998) and comparing them with the corresponding equilibrium results of the e.d.l. theory (Olphen, 1977;

Hunter, 1994) one may note that variables such as U, E, p and c� incorporate quantities of completely
different nature. For example, the fluid pressure/electric potential fp;Ug incorporate the bulk phase
pressure/streaming potential (which are inherent to the bulk solution) and Donnan osmotic pressure/e.d.l.

potential which are properties typically associated with the e.d.l. The former pair varies slowly with the

fluid flow whereas the latter varies strongly across the pore even at equilibrium. Thus, the preceding mi-

cromechanical description can be enhanced if we decompose these variables into ‘‘slow’’ and ‘‘fast’’

components and reformulate the local description in terms of the decomposed quantities.

3.1. Streaming potential and bulk concentration

Following the approach proposed in Sasidhar and Ruckenstein (1981, 1982) and Bike and Prieve (1992)
in order to split the effects in the electric potential which arise from typical e.d.l. and those induced from

fluid flow, we write U in the form

U ¼ u þ w: ð12Þ

To characterize u and w, the former aims at representing a potential which varies across the pore domain,
purely related to double layer effects, whereas the latter component is selected to play a similar role of the

so-called streaming potential which develops in order to maintain electroneutrality (Yang and Li, 1998;
Sasidhar and Ruckenstein, 1981). We then characterize w as an electric potential inherent to the species of a
bulk solution which is constructed locally at thermodynamic equilibrium with ions. Denote cb the con-
centration associated with the local bulk solution (same for both co-ions and counterions) and define

l�
b 	 �Fw þ RT log cb the corresponding electrochemical potential, which by construction is given as

l�
b 	 l�. Note that rather than non-ionic, a streaming potential w is assigned to the bulk solution and the
characterization of cb relies in the absence of the excess of one component relative to the other

(cþb ¼ c�b ¼ cb) and in the consequent absence of a net charge density (qb 	 F ðcþb � c�b Þ ¼ 0).
Introducing the dimensionless quantities u 	 Fu=RT and w 	 Fw=RT and using (6) (with z ¼ 1), the

equality between the chemical potentials furnishes

l�
b 	 �Fw þ RT log cb ¼ l� ¼ �FU þ RT log c�

in which along with (12) leads to the following generalized Boltzmann distributions

c� ¼ cb expð�U � wÞ ¼ cb expð�uÞ; q ¼ �2Fcb sinhu: ð13Þ
An important consequence of (13) is the extension of the Boltzmann distributions to the non-equilibrium

case by subtracting w from the overall potential U. Thus, the spatial distribution of w assigns reference

values of the electric potential to which the excess u ¼ U � w plays the role of a potential purely associated
with e.d.l. effects. In contrast to u, the streaming potential is tied up directly to the macroscopic flow and
transport processes and to the enforcement of the electroneutrality condition.

3.2. Auxiliary concentrations

The Nernst–Planck model (8) can also be represented in terms of classical non-linear convection–dif-

fusion equations (in the absence of the electrophoretic term due to $U) by simply adopting a change in
variables and making use of auxiliary concentrations. In a similar fashion to the bulk concentration cb these
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auxiliary variables, denoted by cþf and c�f , are introduced as ‘‘fictitious’’ NaCl concentrations in a non-ionic
solution which are constructed locally at equilibrium with cations and anions i.e. with the same electro-

chemical potential. The relations between c� and c�f can be derived by defining the chemical potentials of
the neutral species l�

f 	 RT log c�f (Callen, 1985). By construction and using definition (6) (with z ¼ 1), the
local equilibrium conditions l�

f ¼ l� give

RT log c�f ¼ �FU þ RT log c�

which implies in the local Boltzmann transformations for c�f

cþf 	 cþ expðUÞ; c�f 	 c� expð�UÞ c�f ¼ cb expð�wÞ: ð14Þ

Hence, c�f ¼ c� when U ¼ 0 which characterizes c�f as concentrations of non-ionic species at local thermo-
dynamic equilibrium with the ions. Using (14) in (8) and in boundary condition (10)(a) we obtain that c�f are
governed by

o

ot
expð
�

� UÞc�f
�
þ $ � expð

�
� UÞc�f v

�
¼ $ � D� expð

�
� UÞ$c�f

�
ð15Þ

along with the homogeneous Neumann condition D� expð�UÞ$c�f � n ¼ 0 on C. As we shall illustrate next,
due to the resemblance with classical convection–diffusion equations, the above form is more convenient to

homogenize (Auriault and Adler, 1995). Conversely, we have characterized a ‘‘true’’ bulk solution by the

absence of excess of one species relative to another, i.e. in a bulk solution cþf ¼ c�f ¼ cf which leads to the
absence of a net charge density (qf 	 F ðcþf � c�f Þ ¼ 0). Clearly from (14) the concentrations c�f do not fulfill
this requirement and therefore they correspond to hypothetical concentrations which are not associated

with a bulk solution and behave discontinuously across membranes separating the electrolyte solution from
an outer bulk fluid.

To summarize we then have the Boltzmann relations

c� ¼ c�f expð�UÞ ¼ cb expð�U � wÞ ¼ cb expð�uÞ:

Finally it should be noted that for the particular case of absence of fluid flow and ion transport, when the

electrolyte solution is at equilibrium which an outer saline bath of concentration ceq, the classical equili-
brium distributions of the e.d.l. theory shall be recovered from our results by simply setting w ¼ cte 	 0,
U ¼ u and c�f ¼ cb ¼ ceq.

3.3. Bulk fluid pressure

Likewise c� and U, the pressure p varies across the fluid domain at equilibrium and its magnitude in-

corporates the effects of the bulk phase pressure of the outer solution pb and Donnan osmotic pressure p,
which for dilute solutions is classically defined in terms of the Van�t Hoff relation p ¼ RT ðcþ þ c� � 2cbÞ
(Donnan, 1924; Huyghe and Janssen, 1997). Thus a decomposition similar to (12) can be adopted for p

which can also be identified with a pointwise extended definition for pb within the fluid phase. To ac-
complish this task we begin by rewriting the Coulomb term in the modified Stokes problem (2) as

�qE ¼ q$U ¼ $ð
R U
0

qð/Þd/Þ. Using this result, the pressure gradient along with the Coulomb term in (2)
can be rewritten as $p þ q$U ¼ $ðp þ

R U
0

qd/Þ which suggests this quantity as the driving force for fluid
flow. Hence, we identify this quantity with a local apparent bulk phase pressure pb 	 p þ

R U
0

qd/ which

plays a similar role of the classical bulk pressure of a Stokesian fluid. To confirm this statement we show

that the above definition is equivalent to subtracting the osmotic pressure p from p. In fact, using (13) in the
above definition we have
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pb 	 p þ
Z u

0

qdu ¼ p � 2Fcb
Z u

0

sinhudu ¼ p � 2RTcbðcoshu � 1Þ ¼ p � RT ðcþ þ c� � 2cbÞ ¼ p � p

ð16Þ

which shows the desired result. Hence, likewise the bulk concentration cb, the reference quantity pb plays
the role of the pressure of a bulk fluid constructed locally at hydrodynamic equilibrium with the electrolyte

solution (this pressure has been also termed solvent pressure (see e.g. Sasidhar and Ruckenstein, 1982).

Using (12), (13) and (16), in terms of pb the modified Stokes problem (2) can be rewritten as

lfMv� $pb � 2RT coshuð � 1Þ$cb ¼ 2RTcb sinhu$u � 2Fcb sinhu$U

¼ 2RTcb sinhu$ðu � UÞ ¼ �2RTcb sinhu$w: ð17Þ

4. Homogenization

In this section we adopt the homogenization procedure to upscale the microscopic problem to the

macroscale. In this framework the macroscopic swelling medium is idealized as a bounded domain X� with

a periodic structure. Following the general framework of homogenization (see e.g. Sanchez-Palencia, 1980),

introduce the microscopic characteristic length-scale associated with the cell (l), for which microscopic
heterogeneities are relevant, and the macroscopic length-scale related to the overall dimensions of the clay

(L) where the heterogeneities are invisible. Define the perturbation parameter as the ratio � 	 l=L. Make
use of the scale separation assumption wherein the characteristic length l is small in comparison with the

macroscopic length scale L such that � 
 1. Consider X� composed of spatially repeated unit disjoint

parallelepiped periods, Y �, congruent to a standard Y formed by the union of cell domains Ys and Yf oc-
cupied by the clay particles and electrolyte solution respectively. Denote X�

f and X�
s the fluid and solid

subdomains of X� given by the union of cell domains �Yf and �Ys respectively whereas the interface C� is

given by the union of oð�YfsÞ interfaces. Our starting point, � ¼ 1, corresponds to our microscopic model.
The �-model in X� consists of properly scaled equations on a lattice of copies �Y . In order to determine a
macroscopic equivalent description, the asymptotic behavior of the periodic solution of the microscopic

equations is sought as the scale of the inhomogeneity decays asymptotically when the parameter � ! 0.

4.1. Order of magnitude of the coefficients

An essential feature inherent to any upscaling technique is the proper scaling of the dimensionless

quantities which appear in the microscopic description (Auriault, 1991). In order to establish the order of

magnitude of each coefficient we begin by rewriting the micromodel in dimensionless form and then we

estimate the set of non-dimensional numbers which characterize the local description. Begin by assigning

the subscript ‘‘ref’’ to the reference value for which the corresponding microscopic quantity is normalized.
The reference characteristic length ‘ref is chosen of the order of the macroscopic medium, i.e. ‘ref 	 L such
that the macroscopic length L is used to normalize the spatial differential operators. Likewise, the time scale

is normalized with respect to tref ¼ L2=D�. The orders of magnitude of the reference velocity vref and
pressure pref are based on classical dimensional analysis of Darcy�s law which shows vref ¼ ‘2pref=lfL
(Auriault, 1991). The choice of the reference electric field Eref is based on boundary condition (10)(d) which
suggests Eref 	 r=~ee~ee0. Furthermore, since U and E are locally related by (1), choose Uref ¼ ‘Eref . The choice
of the reference concentration cref is based on the electroneutrality condition (11). Since the volume integral
of the net charge q ¼ F ðcþ � c�Þ is neutralized by the surface integral of the charge density r, the con-
centrations vary 1=‘ faster than the surface charge density and thus we select cref ¼ r=ðF ‘Þ. The selection of
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the reference displacement of the solid phase uref is based on (10)(c) expressing continuity of the normal
component of the stress tensor on C. Denoting CE

ref 	 0:5~ee~ee0E2ref the reference quantity for the Maxwell
stress tensor, using the constitutive equations for the stress tensors (3) and (9) and the relation between vref
and pref , we choose ðks þ 2lsÞuref=L ¼ pref þ lfvref=l þ CE

ref ¼ ð1þ �Þpref þ CE
ref � pref þ CE

ref . Thus, by re-
phrasing the microscopic system in dimensionless form, the following dimensionless quantities naturally

appear

Pe ¼ vrefL
D�

; N ¼ F r‘
~ee~ee0RT

; M1 ¼
r2

~ee~ee0pref
; M2 ¼

~ee~ee0E2refL
2uref 3ks þ 2lsð Þ :

The number Pe is the classical P�eeclet number which measures the ratio between convective and diffusive
effects. The number N quantifies the ratio between the electrical and thermal molar energies (which are of

the same order of magnitude) whereas the parameters M1 and M2 measure the magnitude of Maxwell

stresses relative to the fluid pressure p in the constitutive equation (3) for rf (recall that r2=ð~ee~ee0Þ ¼ ~ee~ee0Eref )
and to the stresses in the solid particles rs in boundary condition (10)(c). From the conventional e.d.l.

theory, Maxwell stresses counterbalance the variations in osmotic pressure in the fluid domain (Derjaguin

et al., 1987) and therefore the magnitude of the components of sM is of the same order of both fluid pressure

p and particle stresses rs. Finally we shall consider the case where convection effects are of lower order of

magnitude compared to diffusion such that the P�eeclet number is assumed small. Hence we adopt the fol-
lowing estimates

Pe ¼ Oð�Þ; N ¼ Oð1Þ; M1 ¼ Oð1Þ; M2 ¼ Oð1Þ:
We remark that the above estimate for Pe does not place any constraint in the analysis. For simplicity it can
be shown, using the analysis developed in Auriault and Adler (1995), that when adopting the above esti-

mate for Pe, ion convective-diffusive motion is characterized by only one time scale t ¼ L2=D� associated
with the diffusion process. Likewise, the other ranges of Pe where advection effects are more pronounced
can also be incorporated in the analysis by pursuing the approach proposed in Auriault and Adler (1995).

Making use of the above scaling laws for the coefficients the micromechanical model is rephrased below

with a formal �n factor to indicate the order of magnitude of each term. Denoting dij the Kronecker delta

symbol and cs the fourth-order elastic modulus tensor of the solid phase with components cijkl ¼ ksdijdkl þ
lsðdikdjl þ dildjkÞ we then have in Xf

�2MU ¼ � q
~ee~ee0

; E ¼ ��$U; c� ¼ c�f exp
�
� U

�
; q ¼ F ðcþ � c�Þ;

$ � rf ¼ 0; rf ¼ �pI þ ~ee~ee0
2
2E
�


 E � E2I
�
þ 2�2lfEðvÞ;

$ � v ¼ 0; �2lfMv ¼ $pb þ 2RT coshuð � 1Þ$cb � 2RTcb sinhu$w;

o

ot
exp

��
� U

�
c�f
�
þ �$ � exp

��
� U

�
c�f v
�
¼ $ � D� exp

��
� U

�
$c�f

�
ð18Þ

and in Xs

$ � rs ¼ 0; rs ¼ csEðuÞ
and on the fluid–solid interface C

�$U � n ¼ r
~ee~ee0

; v ¼ ou

ot
; D� exp

�
� U

�
$c�f � n ¼ 0;

rfn ¼
 

� pI þ ~ee~ee0
2
2E
�


 E � E2I
�
þ 2�2lfEðvÞ

!
n ¼ rsn ¼ csEðuÞn:
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It should be noted that at the microscale, electrical effects in the electrolyte solution induce stresses in the

solid phase through the Maxwell component in the above traction boundary condition.

4.2. Matched asymptotic expansions

Following the usual framework of homogenization begin by introducing microscopic and macroscopic

coordinates associated with the cell (y) and the overall dimensions of the swelling medium x ¼ �y. Consider
each quantity depending on both scales in the form f ¼ f ðx; yÞ and postulate two-scale asymptotic ex-
pansions in terms of the perturbation parameter � for the set w� of unknowns fu; rsg and frf ; v; pb;U;
u;w;E; sM; c�; c�f ; q; l

�g

w� ¼ w0 þ �w1 þ �2w2 þ � � � ð19Þ

with the coefficients wi spatially periodic in y over a unit cell Y ¼ Yf [ Ys. Insert the expansions (19) into the
set of microscopic governing equations with the differential operator o=ox replaced by o=ox þ ��1o=oy . After

a formal matching of the powers of �, we obtain a recursive system of cell problems parametrized by x. For
the fluid in Yf we have

MyyU
0 ¼ � q0

~ee~ee0
; ð20Þ

E0 ¼ �$yðu0 þ w0Þ; ð21Þ

U0 ¼ u0 þ w0; ð22Þ

$y � v0 ¼ 0; ð23Þ

$x � v0 þ $y � v1 ¼ 0; ð24Þ

$y � r0f ¼ 0; ð25Þ

$x � r0f þ $y � r1f ¼ 0; ð26Þ

r0f ¼ �p0I þ s0M; s0M ¼ ~ee~ee0
2

2E0
�


 E0 � ðE0Þ2I


; ð27Þ

$yp0b þ 2RT coshu0
�

� 1
�
$yc0b � 2RTc0b sinhu0$yw

0 ¼ 0; ð28Þ

lfMyyv
0 ¼ $xp0b þ $yp1b þ 2RT coshu0

�
� 1
�

$xc0b
�

þ $yc1b
�
� 2RTc0b sinhu0 $xw

0
�

þ $yw
1


; ð29Þ

c�0 ¼ c�0f expð�U
0Þ ¼ c0b expð�u0Þ; ð30Þ

c�0f ¼ c0b expð�w
0Þ; ð31Þ

c�1f ¼ expð�w
0Þ c1b
�

� c0bw
1


; ð32Þ

q0 ¼ F cþ0
�

� c�0
�
¼ �2Fc0b sinhu0; ð33Þ
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l�0 ¼ �FU0 þ RT log c�0 ¼ �Fw0 þ RT log c0b ¼ RT log c�0f ; ð34Þ

$y � D� expð
h

� U
0Þ$yc�0f

i
¼ 0; ð35Þ

$y � D� expð
h

� u0Þ $yc0b
�

� c0b$yw
0

i

¼ 0; ð36Þ

$y � D� expð
h

� U
0Þð$xc�0f þ $yc�1f Þ

i
¼ 0; ð37Þ

o

ot
ðexpð�U

0Þc�0f Þ þ v0 � $yðexpð�U
0Þc�0f Þ ¼ $x � D� expð

h
�U

0Þð$xc�0f þ $yc�1f Þ
i

þ$y � D� expð
h

�U
0Þð$xc�1f þ $yc�2f Þ � U

1ð$xc�0f þ $yc�1f Þ
i
:

ð38Þ

For the clay particles in Ys we have

$y � csEyðu0Þ
� �

¼ 0; $y � csðEyðu1Þ
�

þ Exðu0Þ
�
¼ 0; ð39Þ

$x � r0s þ $y � r1s ¼ 0; r0s ¼ cs Exðu0Þ
�

þ Eyðu1Þ
�
: ð40Þ

Finally the parametrized boundary conditions on oYfs are

$yU
0 � n ¼ r

~ee~ee0
; v0 ¼ ou0

ot
; v1 ¼ ou1

ot
; ð41Þ

cs Eyðu0Þ
� �

n ¼ 0; r1sn ¼ r1f n; ð42Þ�
� p0I þ s0M

�
n ¼ cs Exðu0Þ

�
þ Eyðu1Þ

�
n; ð43Þ

D� expð�U
0Þ$yc�0f � n ¼ 0; ð44Þ

D� expð�U
0Þ $xc�0f
�

þ $yc�1f
�
� n ¼ 0; ð45Þ

D� expð�U
0Þ $xc�1f
�

þ $yc�2f � U
1

$xc�0f
�

þ $yc�1f
�


� n ¼ 0: ð46Þ

4.2.1. Non-oscillatory variables

We begin by collecting our set of ‘‘slow’’ variables, which are independent of the fast coordinate y. From
(39)(a) and (42)(a) we obtain u0ðx; y; tÞ ¼ u0ðx; tÞ. Further from (34), (35) and boundary conditions (44) we
also have c�0f ðx; y; tÞ ¼ c�0f ðx; tÞ and l�0ðx; y; tÞ ¼ l�0ðx; tÞ. Moreover, by adding (34) over cations and
anions we obtain c0bðx; y; tÞ ¼ c0bðx; tÞ and w0ðx; y; tÞ ¼ w0ðx; tÞ. Finally using these two latter results in (28)
also implies $yp0b ¼ 0) p0bðx; y; tÞ ¼ p0bðx; tÞ. Thus our set of ‘‘slow’’ variables is fc0b;w

0; u0; p0b; c
�0
f ; l�0g.

4.2.2. Local Poisson–Boltzmann

Using decomposition (22) and (33) in the Poisson equation (20) along with boundary condition (41)(a)

we obtain the local cell problem
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~ee~ee0Myyu
0 ¼ �q0 ¼ 2Fc0bðx; tÞ sinhu0 in Yf ;

~ee~ee0$yu
0 � n ¼ r on oYfs

ð47Þ

with q0 and r subject to the local electroneutrality conditionZ
Yf

q0 dY ¼ �
Z
oYfs

rdC: ð48Þ

The above result shows that the Poisson–Boltzmann problem can be extended to the non-equilibrium case

locally provided U0 is replaced by the relative potential u0. Moreover, an essential feature underlying (47) is
the fact that the Poisson–Boltzmann problem does not survive at the macroscale. This arises from the

scaling factor �2 in the Poisson problem (18)(a) which leads to the ‘‘shrinking’’ of the homogenized equation
as � ! 0. Thus, u0, U0 and E0 are highly oscillatory quantities which depend strongly on y. Notably this
fact is consistent with the e.d.l. results at equilibrium where these quantities vary across the pore fluid

domain (Olphen, 1977; Hunter, 1994).

4.2.3. Movement of the ions

In order to derive the macroscopic form of the ion transport equations we begin by homogenizing (37)

and (38) in terms of the auxiliary salinities c�0f and then rephrase the homogenized result in terms of the pair

fc0b;w
0g by making use of the change in variables (31). By combining (37) with boundary condition (45)

along with the decomposition (22), the closure problem for c�1f consists in finding the solution of the local

Neumann problems

$y � D� expð
�

� u0Þð$yc�1f þ $xc�0f Þ
�
¼ 0 in Yf ;

D� expð�u0Þ $yc�1f
�

þ $xc�0f
�
� n ¼ 0 on oYfs

which together with (31) can be represented up to an additive function ĉc�ðx; tÞ

c�1f ¼ f � x; y; tð Þ � $xc�0f x; tð Þ ¼ f � expð
h

� w
0Þ$xc0bðx; tÞ � c0bðx; tÞ expð � w

0Þ$xw
0ðx; tÞ

i
; ð49Þ

where f � are auxiliary Y-periodical vectorial functions satisfying the cell problems

$y � D� expð
�

� u0Þð$yf
� þ IÞ

�
¼ 0 in Yf ;

D� expð�u0Þ $yf
��
þ I
�
� n ¼ 0 on oYfs:

ð50Þ

Note that since u0 depends on c0b through the local Poisson–Boltzmann problem (47), the above charac-
teristic functions exhibit the dependence f � ¼ f �ðy; c0bÞ.
To derive the homogenized form of (38) define h�ia 	 jYaj�1

R
Ya
�dYa ða ¼ f ; sÞ the intrinsic volume ave-

rage operator over the a-portion of the unit cell Y. Also denote na 	 jYaj=jY j ða ¼ f ; sÞ the volume fraction
of the a-phase and h�i 	 jY j�1

R
Ya
�dY ¼ nah�ia the average operator over Y. Integrating (38) over Y and

using the closure problem (49) for c�1f we obtain

o

ot
nfhexpð
h

� U
0Þif c�0f

i
� c�0f hexpð�U

0Þv0 � $yU
0i ¼ $x � hD� expð

h
� U

0ÞðI � $yf
�Þi$xc�0f

i
; ð51Þ

where the average of the last term in the r.h.s. of (38) vanishes using the divergence theorem along with the

boundary condition (46) and the periodicity assumptions. Furthermore, using the mass balance (23) to-
gether with the divergence theorem and the no-slip boundary condition (41)(b) one can rewrite the second

term in the l.h.s. of (51) as
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�c�0f hexpð�U
0Þv0 � $yU

0i ¼ c�0f h$y � ðexpð�U
0Þv0Þi ¼ c�0f

jY j

Z
oYfs

expð�U
0Þv0 � ndC

¼ c�0f
jY j

Z
oYfs

expð�U
0Þ ou

0

ot
� ndC ¼ c�0f

ou0

ot
� h$y expð�U

0Þi:

Hence, neglecting the convective effects induced by ou0=ot, the last term vanishes and consequently (51)
reduces to a purely homogenized diffusion equation. Finally, to rewrite (51) in terms of the pair fc0b;w

0g we
make use of the generalized Boltzmann transformations (31). Defining the homogenized diffusion coeffi-

cient D�
� 	 hD� expð�u0Þ I � $yf

�� �
if , we have

o

ot
ðnfhexpð�u0Þif c0bÞ ¼ $x � hD� expð

h
� U

0ÞðI � $yf
�Þi expð � w

0Þð$xc0b � c0b$xw
0Þ
i

¼ $x � D� expð
��

� u0Þ I
�

� $yf
���$xc0b � c0b$xw

0


¼ $x � nfD

�
� $xc0b
�h

� c0b$xw
0

i

:

ð52Þ

The above result is our homogenized diffusion equations with the product nfD
�
� playing the role of an

effective diffusion coefficient. It should be noted that since c0b reflects the concentration of a bulk solution at
thermodynamic equilibrium with the ions, this quantity (unlike c�0f ) behaves continuously across the in-
terface between the electrolyte solution and an outer saline bath. Thus, (52) is the natural formulation
to describe ion movement where boundary conditions can naturally be imposed. Nevertheless, we re-

mark the usefulness of the auxiliary result (51) as it was obtained within a straightforward homogeni-

zation procedure of classical convection–diffusion equations (see e.g. Auriault and Adler, 1995). After

computing c0bðx; tÞ, the averaged ion concentrations hc�0i can be recovered within a post-process-

ing approach considering (13) which gives hc�0if ¼ c0bhexpð�u0Þif . This shows that the capacitance term
in the l.h.s. of (52) can also be rephrased as oðnfhc�0if Þ=ot and therefore the net charge density is also given
as hq0if ¼ �2Fc0bhsinhu0if ¼ F ðhcþ0if � hc�0if Þ. Further, defining the macroscopic electric current J0 as

J0 ¼ Fnf D�
þð$xc0b

h
þ c0b$xw

0Þ �D�
�ð$xc0b � c0b$xw

0Þ
i

¼ Fnf ðD�
þ

h
�D�

�Þ$xc0b þ c0bðD�
þ þD�

�Þ$xw
0
i

ð53Þ

by multiplying (52) by F, subtracting the results for cations and anions and neglecting the effects of changes

in porosity upon the electric current, we obtain the macroscopic conservation of charge

nf
ohq0if

ot
þ $x � J0 ¼ 0: ð54Þ

By combining the above result with the electroneutrality condition (47) and recalling that r is time inde-
pendent we obtain the divergence free constraint $x � J0 ¼ 0. Further, as we shall observe in Appendix A.4,
the above result together with macroscopic homogeneous Neumann boundary conditions (J0 � n ¼ 0) may
lead, in some particular stratified one-dimensional microstructures, to the stronger form of charge con-

servation J0 ¼ 0.

4.2.4. Darcy’s law

To derive the macroscopic form of Darcy�s law governing the movement of the electrolyte solution we
begin by combining the closure relations (49) for c�1f with (32) to obtain

$yc1b � c0b$yw
1 ¼ expð�w

0Þ$yc�1f ¼ $yf
� $xc0b
�

� c0b$xw
0



in which after adding and subtracting over cations and anions yield
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2$yc1b ¼ $y f þð þ f �Þ$xc0b þ $y f þð � f �Þc0b$xw
0
;

2c0b$yw
1 ¼ $y f þð � f �Þ$xc0b þ $y f þð þ f �Þc0b$xw

0
:

Using the above results the fluctuating part of the two latter terms of the r.h.s. of (29) can be represented

as

2RT coshu0
�h

� 1
�
$yc1b � sinhu0c0b$yw

1
i
¼ RT coshu0

��
� 1
�
$y f þð þ f �Þ � sinhu0$y f þð � f �Þ$xc0b

�
þ RT coshu0

�h
� 1
�
$y f þð � f �Þ � sinh$y f þð þ f �Þc0b$xw

0
i

which give

lfMyyv
0 � $yp1b ¼ $xp0b þ F$xc0b þ G$xw

0

with

F ¼ RT 2 coshu0
��

� 1
�
I þ expð

�
� u0Þ � 1

�
$yf

þ þ expð
�

þ u0Þ � 1
�
$yf

��; ð55Þ

G ¼ RTc0b
�
� 2 sinhu0I þ expð

�
� u0Þ � 1

�
$yf

þ � expð
�

þ u0Þ � 1
�
$yf

��: ð56Þ

The r.h.s. of the above result shows that in addition to a bulk phase pressure gradient flow is also driven

by gradients in concentration (chemico-osmotic effect) and streaming potential (electro-osmotic effect).

To derive Darcy�s law we decompose the velocity and pressure fluctuation into their hydraulic, chemico-
osmotic and electro-osmotic components v0 ¼ v0p þ v0c þ v0e and p1b ¼ p1p þ p1c þ p1e . The pair fv0p; p1pg satisfies
the local Stokes problem only driven by pressure gradient

lfMyyv
0
p � $yp1p ¼ $xp0b;

$y � v0p ¼ 0 in Yf ;

v0p ¼ ou0

ot on oYfs;

whereas the chemico- and electro-osmotic components satisfy

lfMyyv
0
c � $yp1c ¼ F$xc0b;

$y � v0c ¼ 0 in Yf ;
v0c ¼ 0 on oYfs;

lfMyyv
0
e � $yp1e ¼ G$xw

0
;

$y � v0e ¼ 0 in Yf ;
v0e ¼ 0 on oYfs:

������
Denoting fejg, ðj ¼ 1; 2; 3Þ an orthonormal basis, define the set of periodic characteristic tensorial functions
fjp; jc; jeg, with vectorial components fjj

p; j
j
c; j

j
eg, ðj ¼ 1; 2; 3Þ and the scalars f epppp

1; epcpc
1; epepe

1g satisfying the
following canonical problems

lfMyyj
j
p � $y epppp

1 ¼ �ej;
$y � jj

p ¼ 0; j ¼ 1; 2; 3;
jj

p ¼ 0 on oYfs

and

lfMyyj
j
c � $y epcpc

1 ¼ �Fej

$y � jj
c ¼ 0;

jj
c ¼ 0 on oYfs;

lfMyyj
j
e � $y epepe

1 ¼ �Gej;
$y � jj

e ¼ 0; j ¼ 1; 2; 3;
jj

e ¼ 0 on oYfs:

������ ð57Þ
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Hence, exploiting the linearity between the above results we obtain after averaging

v0p

�
� ou0

ot

�
¼ �KP$xp0b with KP 	 hjpi;

hv0ci ¼ �KC$xc0b with KC 	 hjci;

hv0ei ¼ �KE$xw
0
with KE 	 hjei:

ð58Þ

Defining the Darcian velocity v0D 	 hv0f � ou0=oti þ hv0ci þ hv0ei, Darcy�s law is finally written

v0D ¼ �KP$xp0b � KC$xc0b � KE$xw
0
: ð59Þ

The above result resembles in form Darcy�s law derived in Gu et al. (1998a). The first term in the r.h.s.

quantifies flow driven by the bulk phase pressure gradient. This component has been termed the me-

chanochemical force, as it incorporates the difference between hydraulic and chemico-osmotic pressures

$ðp0 � p0Þ. The middle term is the chemico-osmotic (gradient of the Nernst potential) and is particularly
pronounced when the salinity varies spatially. The last term in the r.h.s. incorporates the electro-osmotic

component which dictates flow driven by streaming potential gradients. The mechano-electrochemical

coupling coefficients are defined thermodynamically in Gu et al. (1998a) in the spirit of Onsager�s reci-
procity relations. In the proposed formulation they arise naturally and can be computed precisely through

their micromechanical representations (57) and (58). These representations provide important insight in the

mechanisms that drive flow and in the physics underlying the coupling coefficients KC and KE. In particular

one may note that the functions F and G are governed by a leading component (first term in the r.h.s. of

(55) and (56)) which is mainly related to the distribution of the electric potential across the pore space. In
addition, one may observe that the fluctuations in the ions concentration (terms related to f �) also influence
the magnitude of the coupling coefficients. For the particular case where the geometry of cell is composed of

two parallel particles (stratified arrangement), since pressure and concentration are constant in each cross

section, their fluctuations in the transversal direction vanish and thus the behavior of fF;Gg is only dic-
tated by the variability of u0 in the transversal direction. This reproduces the results of Sasidhar and
Ruckenstein (1981) for the case of a stratified arrangement. The additional terms involving the fluctuations

f � in (55) and (56) aim at incorporating the local variability in the concentrations which arises when dealing
with non-stratified arrangements. Further, if the thickness of the e.d.l. is small compared to the interlayer
spacing, the first term in the r.h.s. of (57) for G leads to the well known Smoluchowski model (see e.g.

Shang, 1997; Hunter, 1981; Coelho et al., 1996) which relates electro-osmotic permeability with the zeta

potential (see Appendix A.2, Eq. (A.7) for details). Concerning the coupling mechanisms that drive fluid

flow it should be noted that, as the streaming potential slows down the movement of the fluid and the ions

to conserve charge (see Appendix A.4) the terms involving $c0b and $w
0
act in opposite directions therefore

competing with each other. In fact the electro-osmotic component �KE$w
0
leads to fluid movement toward

the regions of higher concentration where the streaming potential is lower (see details in Appendix A.4, Eq.

(A.9)) and therefore it plays the role of a true osmotic term. On the other hand, the chemico-osmotic
component related to �KC$c0b arises from the gradient of the osmotic pressure in analogy to the case of

non-ionic solutions (see e.g. Barbour and Fredlund, 1989). The peculiar phenomena of anomalous (reverse)

osmosis (discussed in e.g. GU et al. (1998b)) occurs when the chemico-osmotic component dominates the

electro-osmotic one for a constant bulk phase pressure. When the frictions due to the electro-chemo effects

(which are related to the inverse of the couplings coefficients KC and KE) are of the same magnitude of the

viscous friction (inverse of the hydraulic conductivity KP ), Eq. (59) resembles in form the one postulated by

Huyghe and Janssen (1997). In this case both KC and KE � KP and therefore the movement of te electrolyte

solution is described by only one conductivity coefficient. Further, it should be noted that for particular
microstructural morphologies where the condition $x � J0 ¼ 0 may be replaced by J0 ¼ 0 (typically the one-
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dimensional stratified microstructure of Appendix A), from (53) the electro-osmotic term can be eliminated

in terms of the concentration gradient. This leads to the form (A.11) of Darcy�s law, which resembles the
one postulated in Barbour and Fredlund (1989) and Kaczmarek and Hueckel (1998), not including the term

related to the streaming potential gradient.

4.2.5. Modified Terzaghi’s decomposition

To derive the modified Terzaghi�s effective principle we average the fluid and solid momentum balances
(26)(a) and (40)(a). Using the divergence theorem, boundary condition (42)(b) and the periodicity we obtain

the overall momentum balance

$x � r0T ¼ 0; where r0T 	 hr0f i in Yf ;
hr0s i in Ys

�
ð60Þ

is the overall stress tensor of the mixture. The modified Terzaghi�s effective stress principle can be obtained
by considering the homogenized constitutive laws for hr0f i and hr0s i. To this end we make use of (16) and
rephrase the Neumann problem (39)(b) and (43) for u1 as

$y � csEyðu1Þ
� �

¼ 0 in Ys;

� p0b x; tð ÞI
�

þ P0
d x; y; tð Þ

�
n ¼ cs Exðu0ðx; tÞÞ

�
þ Eyðu1Þ

�
n on oYfs;

ð61Þ

where P0
d is a disjoining stress tensor which incorporates the chemico-osmotic pressure p0 and Maxwell

stresses s0M

P0
d ¼ p0I � s0M ¼ 2RTc0bðcoshu0 � 1ÞI � s0M: ð62Þ

When comparing the cell problem (61) for u1 with the similar Neumann problems arising in the homo-
genization derivation of Biot�s equations of poroelasticity (see e.g. Terada et al., 1998; Auriault and Sanchez-
Palencia, 1977; Auriault, 1990), the novelty is the appearance of the tensor P0

d which incorporates the

influence of physico-chemical effects on the traction boundary condition. Eqs. (61) and (62) provide rele-

vant information on the local stress analysis of charged particles. In particular, the one-dimensional scalar

version of (62) for P0
d resembles in form the constitutive equations proposed for the electrostatic compo-

nent of the disjoining pressure of plane-parallel thin liquid films (Derjaguin et al., 1987; Dahnert and

Huster, 1999). By linearity we have

u1ðx; y; tÞ ¼ fðyÞp0bðx; tÞ þ nðyÞExðu0ðx; tÞÞ þ u1pðx; y; tÞ þ ûuðx; tÞ: ð63Þ
The canonical cell problems for the third-order tensor n and the vector f are classical (Auriault, 1990;

Terada et al., 1998; Lydzba and Shao, 2000).

$y � csEyðnÞ
� �

¼ 0 in Ys;
$y � csEyðfÞ

� �
¼ 0 in Ys;

csEyðnÞ
� �

n ¼ �csIIn on oYfs;
csEyðfÞ
� �

n ¼ �In on oYfs;
ð64Þ

where II denotes the unity fourth-order tensor. The novelty in (63) is the appearance of u1p which corres-
ponds to the particle displacement component arising from the traction induced by the physico-chemical

tensor P0
d

$y � csEyðu1pÞ
� �

¼ 0 in Ys;

csEyðu1pÞ
� �

n ¼ �P0
dn on oYfs:

ð65Þ

Denoting C s 	 hcsðII þ EyðnÞÞi the macroscopic elastic modulus (fourth-rank tensor) by averaging the
constitutive equation (40)(b) for r0s and using (63) we obtain

hr0s i ¼ csExðu0Þ þ hcsEyðfÞip0b þ hcsEyðu1pÞi: ð66Þ
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By rewriting the constitutive equation for r0f (27) in terms of p
0
b, using (16) and (62) we get after averaging

hr0f i ¼ �nfp0bI � hP0
di. Using this result in definition (60) along with (66) we obtain

r0T ¼ �ap0b þ C sExðu0Þ � P0; ð67Þ
where a 	 nfI � hcsEyðfÞi is the Biot coefficient for the particles and

P0 ¼ hP0
di þ nsP

0
S with P0

S 	 �hcsEyðu1pÞi
s
; ð68Þ

where ns ¼ 1� nf is the volume fraction of the solid (recall that h�i ¼ nsh�is). Eq. (67) is the macroscopic
form of Terzaghi�s decomposition for the compacted swelling clay. In addition to the pore pressure p0b and
contact stresses C sExðu0Þ, it includes the macroscopic physico-chemical tensor P0 which incorporates the

influence of physico-chemical effects upon the overall stresses of the clay clusters r0T . From (68) this

quantity may be decomposed into the averaged counterpart of P0
d (which from (62) is the sum of chemico-

osmotic and Maxwell stresses) and the additional component P0
S , which consists of chemical stresses in the

particles due to the traction induced by P0
d in (65). Since P0

S represents stresses acting effectively in the solid

phase, it may be viewed as the physico-chemical component directly responsible for the expansion of the

aggregates. Whence, thus quantity shall be referred to as swelling stress tensor as it plays the role of a
tensorial generalization of the swelling pressure to incorporate deviatoric effects. This alternative way of

expressing the modified Terzaghi�s principle resembles in form some heuristic modified effective stress

principles for clays (see e.g. Sridharan and Rao, 1973 or Lambe, 1960). Historically, physico-chemical

forces have heuristically been modeled at the macroscale through the addition of a term to Terzaghi�s
principle which measures the effect of net repulsive (RI) and attractive (AI) forces between particles. This
stress is commonly denoted by ðR � AÞI (see Sridharan and Rao, 1973). In Lambe (1960)), effective stresses
are defined as the difference between total stress and pore pressure whereas in Sridharan and Rao (1973)

effective stresses are nothing but the matrix contact stresses (see Hueckel, 1992a). It should be noted that
our macroscopic modified Terzaghi�s effective stress principle (67) is capable of reproducing both Sridharan
and Rao and Lambe�s parallel connection models. The former can be recovered by simply defining effective
stress as the contact elastic component C sExðu0Þ whereas the latter as C sExðu0Þ � P. Thus,(67) is a first
rational attempt at a rigorous micromechanical derivation of the above heuristic modified Terzaghi�s
principle in the case where A ¼ 0.
In the case of stratified arrangements, an alternative description of the decomposition (68) can be

adopted where the scalar versions of P0
d and P0

S can be precisely identified with Derjaguin�s microscopic
disjoining pressure (Derjaguin et al., 1987) and Low�s macroscopic swelling pressure (Low, 1987) (see
Appendix A.5).

4.2.6. Overall mass balance

Finally we derive the overall macroscopic mass balance. By averaging (24), using boundary condition

(41)(c) together with the closure equation (63) and the divergence theorem we get

h$x � v0i ¼ �h$yv
1i ¼ � 1

jY j

Z
C
v1 � ndC ¼ � 1

jY j

Z
C

ou1

ot
� ndC

¼ $y �
ou1

ot

� �
¼ h$y � ni :

o

ot
Exðu0Þ þ h$y � fi

op0b
ot

þ $y �
ou1p
ot

� �
;

where A : B ¼ trðABTÞ denotes the classical inner product between tensors. By rewriting the above result in
terms of the Darcian velocity v0D we obtain

$x � v0D þ a� :
o

ot
Exðu0Þ ¼ h$y � fi

op0b
ot

þ $y �
ou1p
ot

� �
; ð69Þ
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where a� ¼ nfI � h$y � ni. Further, by pursuing the analysis presented in Auriault and Sanchez-Palencia
(1977) one can show the classical relation a� ¼ nfI � hcsEyðfÞi ¼ a commonly adopted in Biot�s theory of
poroelasticity. Finally, one may note the appearance of the additional last term in the r.h.s. of (69) which is

related to the compressibility of the solid phase due the forces induced by the disjoining stress P0
d .

4.2.7. Mass balance of the fluid phase

To close the system it remains to derive a mass balance for the fluid phase which shall be used to

compute the porosity nf . To this end we make use of the classical Reynolds transport theorem applied to a
general scalar function f defined on Yf . Denoting ou=ot the interfacial velocity and using the no-slip con-
dition (10) we have

ohf i
ot

� of
ot

� �
¼ 1

jY j

Z
oYfs

f
ou

ot
� ndC ¼ 1

jY j

Z
oYfs

f v � ndC

which for f ¼ 1 gives

onf
ot

¼ 1

jY j

Z
oYfs

v � ndC:

Further, using the spatial averaging theorem (Whitaker, 1999) for the mass balance of the incompressible

fluid phase (2) yields

$ � vh i ¼ $ � vh i þ 1

jY j

Z
oYfs

v � ndC ¼ 0:

Combining the above results we get

onf
ot

þ $ � vh i ¼ 0:

Using the asymptotic developments the above relation can be written as

onf
ot

þ $x

�
þ ��1$y

�
� v0
� ��

þ � v1
� ��

¼ Oð�Þ:

Hence, recalling that averaged properties are independent of y we obtain at Oð1Þ

onf
ot

þ $x � hv0i ¼ 0:

Finally, by rewriting the above result in terms of the Darcy velocity v0D ¼ hv0 � ou0=oti and neglecting the
convective effects induced by ou0ðx; tÞ=ot we obtain

onf
ot

þ $x � v0D þ nf$x �
ou0

ot
¼ 0:

4.3. Summary of the two-scale model

Denote ff; n; jpg and fjc; je; f
þ; f �g sets of the aforementioned characteristic functions with the former

set depending on cell geometry and the latter also depending on the salt concentrations c0bðx; tÞ. The two-
scale model consists in finding the macroscopic variables fr0T ; u0; p0b; v0D; c0b;w

0; nfg satisfying

6176 C. Moyne, M.A. Murad / International Journal of Solids and Structures 39 (2002) 6159–6190



$x � r0T ¼ 0;
r0T ¼ �ap0b þ C sExðu0Þ � P0;

v0D ¼ �KP$xp0b � KC$xc0b � KE$xw
0
;

$x � v0D þ a :
o

ot
Exðu0Þ ¼ b

op0b
ot

þ ocp

ot
;

o

ot
nfG�

uc0b
� 


¼ $x � nfD
�
� $xc0b � c0b$xw

0
� 
h i

;

onf
ot

þ $x � hv0Di þ nf$x �
ou0

ot
¼ 0 in X;

8>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>:

ð70Þ

where the component P0 and the coefficients fa;C s;KP ;KC;KE; b; cp;D
�
�;Gug admit the micromechanical

representations in the unit cell Y

P0 ¼ hp0I � s0Mi þ nsP
0
S ; p0 ¼ 2RTc0bðcoshu0 � 1ÞÞ;

s0M ¼ ~ee~ee0
2

2E0
�


 E0 � ðE0Þ2I


; P0

S ¼ �hcsEyðu1pÞi
s
;

a ¼ nfI � hcsEyðfÞi ¼ nfI � h$y � ni; C s ¼ hcsðII þ EyðnÞÞi;
KP ¼ hjpi; KC ¼ hjci; KE ¼ hjei; b ¼ h$y � fi;
ocp

ot
¼ $y �

ou1p
ot

� �
; D�

� ¼ hD� expð�u0ÞðI þ $yf
�Þif ;

G�
u ¼ hexpð�u0Þif

ð71Þ

with the set of local variables fu0;E0; u1pg satisfying the Neumann problems

~ee~ee0Myyu0 ¼ 2Fc0b sinhu0;
E0 ¼ �$yu0 in Yf ;
~ee~ee0E

0 � n ¼ �r on oYfs;

������$y � csEyðu1pÞ
� �

¼ 0 in Ys;
csEyðu1pÞ
� �

n ¼ �ðp0I � s0MÞn on oYfs:
ð72Þ

An essential feature of the above two-scale formulation is the communication between the macroscopic and
microstructural behaviors of the swelling medium which appear naturally in the couplings between global

and local unit cell problems. In this approach the information on the microstructural morphology of the

swelling medium is incorporated in the two-scale model through the geometry of the unit periodic cell and

the magnitude of the local parameters (such as e.g. the surface charge density r). Different cell geometries
lead to different solutions of the closure problems and therefore to different homogenized coefficients.

In what follows we shall consider a particular case of the two-scale model wherein the particles are

isotropic and nearly incompressible with respect to the coupling problem (64)(b) for the coefficients a and b
such that csEyðfÞ ¼ �I and $y � f ¼ 0. Hence we have hcsEyðfÞi ¼ �nsI , a ¼ I and b ¼ 0 which implies that
the overall mass balance reduces to $x � v0D þ ðodivu0=otÞ ¼ 0. This reproduces the classical Biot�s poro-
elasticity results where the coefficient b governs compressibility effects whereas a is ruled by the ratio be-
tween the bulk modulus of the solid and matrix (see e.g. Biot and Willis, 1957). Moreover, under the same

nearly incompressibility assumption we also consider $y � u1p ¼ cp ¼ 0.
The above system is supplemented by macroscopic initial and boundary conditions. Denoting

C ¼ C1 [ C2, with C1 and C2 disjoint subsets of C and N the macroscopic unit outward normal, we consider

the following set of boundary and initial conditions
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divx u ¼ 0; c0b ¼ c0 in X; t ¼ 0;
rN ¼ h; vD �N ¼ 0; c0b ¼ c�; J0 �N ¼ 0 on C1;

u ¼ 0; p ¼ 0; $xc0b �N ¼ J0 �N ¼ 0 on C2;

ð73Þ

where c0 and c� denote respectively prescribed concentrations and h denote a traction condition. The in-
terface C1 corresponds to a loaded mechanically impermeable base with prescribed concentration and
electric current whereas C2 corresponds to a rigid, permeable wall with free drainage, though impermeable
to diffusive ion transport. Note that using the definition (53) for J0 implies $xw

0 �N ¼ 0 on C2

5. Variational formulation and finite element approximation

We now turn to the approximation of the two-scale model by the finite element method. To this end we
begin by considering the variational statement of the problem. Denote L2ðXÞ and L2ðYiÞði ¼ f ; sÞ the usual
spaces of square integrable scalar valued functions equipped with the inner products

ðf ; gÞ0 	
Z

X
fgdX 8f ; g 2 L2ðXÞ;

ðf ; gÞ1 	
Z

Yi

fgdY 8f ; g 2 L2ðYiÞ; i ¼ f ; s

and also let H 1ðXÞ � H 1ðYiÞ be the usual subspaces of L2ðXÞ � L2ðYiÞ given by

H 1ðXÞ 	 ff 2 L2ðXÞ;$f 2 ðL2ðXÞÞ3g;
H 1ðYiÞ 	 ff 2 L2ðYiÞ;$f 2 ðL2ðYiÞÞ3g:

Considering the boundary conditions (73), introduce the appropriate function spaces for the macroscopic

unknowns

U 	 fv 2 ðH 1ðXÞÞ3; v ¼ 0 on C2g;
V 	 fq 2 H 1ðXÞ; q ¼ 0 on C2g;
W 1 	 fw 2 H 1ðXÞ; w ¼ c� on C1g;
W 2 	 fw 2 H 1ðXÞ; w ¼ 0 on C1g:

The variational formulation for the macroscopic problem (70) (with a ¼ I and b ¼ cp ¼ 0) consists in: For
each t 2 ð0;1Þ, find fu0ðtÞ; p0bðtÞ; c0bðtÞ;w

0ðtÞg 2 U � V � W 1 � H 1ðXÞ such that:

C sExðu0Þ;ExðvÞ
� �

0
� p0b; divx v
� �

0
� P0;ExðvÞ
� �

0
¼ F �ðvÞ 8v 2 U ;

divx
ou0

ot
; q

� �
0

þ KP$xp0b;$xq
� �

0
þ KC$xc0b;$xq
� �

0
þ KE$xw

0
;$xq

� 

0
¼ 0 8q 2 V ;

o

ot
nfG�

uc0b;w
� 


0
þ nfD

�
� $xc0b
��

� c0b$xw
0


;$xw



0
¼ 0 8w 2 W 2

ð74Þ

with the reduced set of coefficients fcs;KP ;KC;KE;D
�
�;P

0g represented by the micromechanics in (71) and
the porosity nf and the linear functional F �ðvÞ given by

onf
ot

¼ �$x � v0D � nf$x �
ou0

ot
; F �ðvÞ ¼

Z
C1

h � vdC: ð75Þ
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In addition, the weak form of the local unit cell problems (72) for u0 and u1p can be stated as: For given
c0bðx; tÞ and P0

d find fu0ðtÞ; u1pðtÞg 2 H 1ðYfÞ � ðH 1ðYsÞÞ3 such that:

~ee~ee0 $yu
0;$yv

� �
1
þ 2Fc0b sinhu0; v

� �
1
¼ f ðvÞ 8v 2 H 1ðYfÞ; ð76Þ

csEyðu1pÞ;EyðsÞ
� �

1
¼ gðsÞ 8s in ðH 1ðYsÞÞ3 ð77Þ

with

f ðvÞ ¼
Z
oYfs

rvdC; gðvÞ ¼ �
Z
oYfs

P0
dn � sdC; P0

d ¼ p0I � s0M:

5.1. Fully discrete backward Euler–Galerkin formulation

We now discuss the approximations in time and space of the above variational formulation. In what

follows we discretize the macroscopic system (74) by the Galerkin method coupled with a time integration
scheme. We consider a particular numerical example of a stratified clay whose microstructure is composed

of long parallel particles. Moreover, we make use of the assumption of low electric potentials where the

Poisson–Boltzmann is approximated by the Debye–Hueckel linearized form (see Appendix A, Eq. (A.1)).

Under these assumptions the simplified form of the local cell problems (76) and (77) exhibit analytical

solutions (see Appendix A for details). Consequently the discretization technique is applied to the mac-

roscopic system whereas analytical solutions of the local cell problems are used to update the macroscopic

parameters in (74) at each time. Thus, Let Dt be a fixed time step and denote fUh; Vh;W 1
h ;W

2
h ;Xhg the

families of finite dimensional subspaces of fU ; V ;W 1;W 2;H 1ðXÞg containing continuous, equal order
piecewise polynomials on triangles or quadrilaterals of a partition of X of degree k. Denoting cm the ap-

proximation of a variable c at tm ¼ mDt, the backward Euler operator ot approximates the time derivative

by the quotient otcm ¼ ðcm � cm�1ÞDt�1. The fully discrete scheme adopted herein is based on the classical
backward Euler Galerkin method defined as: For each time t ¼ tm ¼ mDt ðmP 1Þ, find the macroscopic
unknowns fu0mh ; p0mbh ; c

0m
bh ;w

0m
h Þ 2 Uh � Vh � W 1

h � Xh satisfying

C sExðu0mh Þ;ExðvhÞ
� �

0
� p0mbh ; divx vh
� �

0
� P0m;ExðvhÞ
� �

0
¼ F �ðvhÞ 8vh 2 Uh; ð78Þ

divx u
0m
h ; qh

� �
0
þ Dt Km

P $xp0mbh ;$xqh

� �
0
¼ �Dt Km

C$xc0mbh ;$xqh

� �
0
� Dt Km

E$xw
0m

h ;$xqh

� 

0

þ divx u
0ðm�1Þ
h ; qh

� 

0

8qh 2 Vh; ð79Þ

nm
f G

�m
u c0mbh ;wh

� 

0
þ Dt nm

f D
�m
� ð$xc0mbh

�
� c0mbh $xw

0m

h Þ;$xwh



0
¼ nm�1

f G�ðm�1Þ
u c0ðm�1Þbh ;wh

� 

0

8wh 2 W 2
h ;

ð80Þ

where divu00h ¼ 0 and c00bh ¼ c0, In addition, at each time step, the linearized set of coefficients

fP0m;Km
P ;K

m
C ;K

m
E ;D

�m
� g are given analytically by the simplified micromechanical representations presented

in Appendix A.

Due to the strong dependence of the macroscopic coefficients on the salinity c0b and porosity nf through
the micromechanical representations, the aforementioned fully discrete formulation leads to a system of

non-linear algebraic equations for the unknowns fu0mh ; p0mbh ; c
0m
bh ;w

0m

h g. For each time tm the system is linearized
using a Picard�s relaxation type algorithm. After convergence is achieved for a given tolerance we proceed
to the next time step. For each iteration, the resultant linear system is solved in a staggered fashion wherein

(78) and (79) are first solved for fu0mh ; p0mh g with the r.h.s. evaluated at the previous iteration. Subsequently
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the solution of the diffusion equations (80) for fc0mbh ;w
0m

h g is computed with the coefficients calculated from
the previous iteration.

6. Clay liner application

We consider an example concerning contaminant migration and electrokinetic attenuation through a

compacted clay liner underneath a sanitary landfill. The problem consists of a geocomposite liner (de-

scribed in the sense of Smith (1999)) composed of a volume of waste and a geomembrane overlying a
compacted clay liner which lies immediately above a saturated aquifer (Fig. 1). The geomembrane corre-

sponds to the top boundary C1 representing an impermeable barrier to fluid flow, whereas the boundary C2
represents a rigid and permeable interface between the liner and the aquifer. For simplicity we consider only

chloride and sodium migration through the liner with a given bulk concentration of the leachate c0b ¼ c� on
the top boundary C1. In addition to the chemical aspects induced by the diffusion of Naþ and Cl� we also
consider the settlement due to the load induced by the placement of the waste in the landfill Smith (1999)

which is measured by the traction h in (73). Thus, the geomembrane transfers both chemical and me-
chanical consolidation from the upper boundary. For simplicity we assume that the contaminant is placed
at the landfill at the same time of the beginning of the consolidation process. The bottom rigid interface C2
between the liner and aquifer, though permeable to fluid flow, is considered a barrier for the diffusive

transport of the leachates.

In Fig. 1 the origin of the longitudinal coordinate axis x is located at the top of the soil liner. Denoting L0
the height of the liner, the boundaries C1 and C2 correspond to the locations x ¼ 0 and x ¼ L0 respectively.
In the idealized stratified microstructure the clay particles are oriented parallel to the longitudinal axis and

therefore flow and transport take place only in the direction of the layers parallel to the x coordinate.

Conversely, the disjoining stress tensor reduces to a scalar disjoining pressure P0
d which acts in the normal

Fig. 1. Geocomposite liner and a zoom of the stratified microstructure composed of parallel particles.
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(or transversal) direction parallel to the unitary vector n normal to the clay surface (Fig. 1). Further, in the
particular case of stratified microstructure, one may use the arguments of the e.d.l. theory to show that P0

d

is constant in the interlayer spacing (see Appendix A.5, Eq. (A.15)). Hence, the one-dimensional solution of

the unit cell problem (65) in the normal direction is csEyðu1pÞ ¼ �P0
dn
 n which shows an unique non-zero

normal compression component equal to the disjoining pressure. By averaging this result and using defi-

nition (68)(b) we obtain P0
S ¼ P0

dn
 n. Thus, defining the swelling pressure P0
S as the projection

P0
S 	 P0

Sn � n we then have P0
S ¼ P0

d . This result reproduces the classical Derjaguin�s statement that for a
parallel particle arrangement, the swelling pressure is nothing but the intrinsic averaging of the disjoining

pressure (see Derjaguin et al., 1987).

A particular consequence of the one-dimensional stratified microstructure is that the macroscopic co-

efficients reduce to scalar quantities which dictate the behavior of the swelling medium in the axial direc-

tion. Conversely, the magnitude of these coefficients is strongly dependent on the e.d.l. and the solution of
the linearized Poisson–Boltzmann problem in the transversal direction, normal to the clay surfaces. Thus,

our numerical example is ruled by two different sets of macro/micro coefficients acting in orthogonal di-

rections. In this configuration, the information provided by the microscopic e.d.l. is used to quantify the

macroscopic parameters at each time. Due to the well known susceptibility of the diffuse double layer to

change in the salinity c0b, as the concentration of the leachate evolves in time, particle separation decreases
leading to a collapse of the fine pores and to a reduction in porosity. By considering a transversal fixed

overburden load PF , the swelling pressure is given as P0
S ¼ P0

d ¼ PF � p0b. This result represents a simplified
form of the momentum balance in the transversal direction (recall that since the particles are parallel, the
transversal Terzaghi�s stress component vanishes). After computing fu0mh ; p0mbh ; c

0m
bh ;w

0m
h g at each Picard ite-

ration this result can be applied in conjunction with the well known representation for P0
S in the Debye–

Hueckel approximation of the e.d.l. (Eq. (A.15)) leading to a relation which can be used to update the

porosity nf at each iteration. In the numerical results presented next, we consider that changes in the po-
rosity nf are mainly dictated by changes in the interlayer spacing H in the transversal direction. When

combined with the mass balance (75) this also can be used to compute the transversal component of the

displacement of the solid phase.

6.1. Numerical results

In what follows the subsequent numerical simulations aim at illustrating the potential of the two-scale
approach in providing an accurate description of the decrease of the micro-porosity (due to the contraction

of the e.d.l.) with the evolution of the brine concentration. The figures display the evolution of the di-

mensionless macroscopic quantities during the contaminant migration through the liner. The corres-

ponding dimensionless quantities are denoted by the superscript ‘‘*’’ and are defined in Appendix B. Fig. 2

depicts the spatial variation of the dimensionless salinity c�b ¼ c0b=c� with the axial coordinate x� ¼ x=L0 for
different times t� ¼ ðks þ 2lsÞKPref t=L20, where KPref is the value of KP initially (see Appendix B). Since an

increase in c�b (equal to one in the top of the liner at x
� ¼ 0) leads to the suppression of the double layers, the

locations of high concentration are associated with regions of low porosity as depicted in Fig. 3. As the
concentration of the contaminant evolves in time the porosity at the bottom of the liner gradually de-

creases. The steady state configuration is characterized by a constant unitary concentration associated with

an uniform low porosity. Also, note that as the velocity vanishes on the top of the liner due to the no-slip

condition with the geomembrane, the pore pressure next to the geomembrane p0bðx� ¼ 0; t ¼ 0þÞ decreases
locally to give rise to a local sharp pressure gradient which opposes the abrupt concentration gradient at

t ¼ 0 in the one-dimensional form of Darcy�s law (see Appendix A.2, Eq. (A.11)). Since P0
d ¼ PF � p0b, this

local boundary layer effect implies in an increase in the disjoining pressure close to x ¼ 0 which also leads to
an abrupt porosity drop at t ¼ 0 even beyond its state value. As times evolves this sharp boundary layer
effect dissipates and the porosity approaches the steady state value associated to the unitary concentration.
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Fig. 2. Spatial distribution of the concentration for different times.

P
O

R
O

SI
T

Y
 (

N
  ) f

Fig. 3. Spatial distribution of the porosity for different times.

Fig. 4. Spatial distribution of the streaming potential for different times.
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This stationary value of nf is much lower compared to the initial one but slightly higher compared to the
value n0f ðx ¼ 0; t ¼ 0þÞ (see Fig. 3).
Fig. 4 depicts the spatial variation and time evolution of the dimensionless streaming potential w

0
, which

is computed within a post-processing approach using (A.9). This quantity is calculated up to an additive
constant which is arbitrarily set equal to zero at the top of the liner. As expected, its negative gradient is

pointing upward which shows that electro-osmotic component slows down fluid flow and cation migration.

As time evolves the gradient of the streaming potential decreases and vanishes at steady state.

7. Conclusion

We have presented an homogenization procedure for derivation of a macroscopic model for montmo-

rillonite expansive clays. The model was derived by scaling up the pore-scale description which consists of
the electro-hydrodynamics coupled with Nernst–Planck equations and the Poisson–Boltzmann problem

which govern the fluid movement, ion transport and local electrostatics in the electrolyte solution. This led

to a two-scale model where the macroscopic behavior appears somewhat related to the response of the

microstructure. The essential feature underlying the micromechanical formulation proposed herein is the

alternative way of representing the macroscopic parameters such as the swelling pressure and the electro-

kinetic coefficients which commonly appear in the framework of Onsager�s reciprocity relations. This
provides a new comprehensive understanding of the physics underlying electro-chemo-mechanical coupling

phenomena and can be used to elucidate the somewhat obscure macroscopic constitutive behavior of the
medium. The two-scale model was discretized by the finite element method. Numerical results were pre-

sented in a particular example concerning contaminant migration through a compacted clay liner under-

neath a sanitary landfill. A particular stratified arrangement for the clay was considered where the unit cell

problems were solved analytically when the electric potential is governed by the linearized Poisson–

Boltzmann problem. Numerical simulations illustrate the relevance of the two-scale approach to improve

the prediction of consolidation of chemically sensitive materials and their relation with the pore-scale

behavior. Clearly this provides new insight in the constitutive theory of expansive porous media.

Further work is required to extend the model to media characterized by two levels of porosity (micro-
and macro-pores) where the movement of the bulk phase water in the macro-pores is also included. This

can be accomplished within the framework of a three-scale approach where an additional level of averaging

is required to incorporate the bulk fluid (see e.g. Hueckel et al., 2001). It has been shown by Murad and

Cushman (1997, 2000) and Murad et al. (2001) that the development of three-scale models lead to homo-

genized microstructure models of dual porosity type for deformable porous media where the two-scale

homogenized system exchanges mass and momentum with the bulk fluid in the macro-pores. Finally, still

within the applications of two-scale models other examples can be pursued such as the sensitivity analysis of

the stability of the micro-pores with the reduction in the dielectric constant of the solvent when water is
replaced by hydrocarbons. The work of Fernandez and Quigley (1985) provides a comprehensive experi-

mental framework which can be exploited to validate the theory proposed herein. These relevant afore-

mentioned issues will be subject of future work.
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Appendix A. Stratified clay microstructure composed of parallel particles

In this Appendix we present the analytical solutions of the micromechanics (71) and (72) in the case of a

stratified clay microstructure composed of parallel particles, when the local electric potential u0 is governed
by the linearized Poisson–Boltzmann problem.

A.1. Debye–Hueckel approximation

Denoting n and t the unitary vectors normal and tangential to the parallel particles, the microscopic
electric field acts normal to the solid, i.e. E0 ¼ E0nn. Assuming the range of low electric potentials u0

�� ��
 1,

the exponential terms in the r.h.s. of (47) can be linearized leading to the well known Debye–Huckel

approximation. Denoting E
0

n ¼ FE0n=RT , the one-dimensional version of the linearized Poisson–Boltz-
mann problem (47), (posed in the interlayer spacing �HðxÞ < y < HðxÞ), reads (see Hunter, 1994; Olphen,
1977).

d2u0

dy2
¼ u0

L2D
; E

0

n ¼ � du
0

dy
;

E
0

n ¼ 0 at y ¼ 0;

E
0

n ¼ � rF
~ee~ee0RT

at y ¼ H ;

8>>>>><>>>>>:
ðA:1Þ

where LD ¼ ~ee~ee0RT =ð2F 2c0bÞ
� �1=2

is the Debye�s length. The solution fu0;E0ng is given as:

u0 ¼ r
2Fc0bLD

cosh y=LDð Þ
sinh H=LDð Þ ; E

0

n ¼ � r
2Fc0bL

2
D

sinh y=LDð Þ
sinh H=LDð Þ : ðA:2Þ

A.2. Darcy�s law

We now derive the analytical expressions for the longitudinal scalar components fKPx;KCx;KExg of the
coefficients fKP ;KC;KEg in Darcy�s law (59). To this end we consider the one-dimensional version of the
Stokes problem (55). Standard arguments commonly used in Poiseuille type flows show that pressure and

concentration are constant over the cross section and therefore the fluctuations p1b, c�1f and f � in the
transversal direction vanish. Hence, in terms of the axial velocity v0xðyÞ the one-dimensional version of (56)
reads

lf
o2v0x
oy2

� op0b
ox

¼ 2RT coshu0
�

� 1
� oc0b
ox

� 2RTc0b sinhu0
ow

0

ox
¼ RT ðu0Þ2 oc

0
b

ox
� ~ee~ee0

d2u0

dy2
ow0

ox
; ðA:3Þ

where the one-dimensional version of the Poisson–Boltzmann (47) has been used and the exponential in the

first term in the r.h.s. has been linearized up to second order. Denoting u0xðx; tÞ the x-component of the solid
displacement, the above problem is supplemented by the boundary conditions v0xðy ¼ HÞ ¼ ou0x=ot and
ðov0x=oyÞðy ¼ 0Þ ¼ 0. By averaging (A.3) over the cross section, the coefficient KPx ¼ H 2=3lf is the averaged
relative velocity hv0x � ou0x=oti with op0b=ox ¼ �1 and oc0b=ox ¼ ow0=ox ¼ 0. Furthermore, the chemico-
osmotic component KC is the averaged of the velocity v0x satisfying

lf
o2v0x
oy2

¼ �RT ðu0Þ2:
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Integrating the above result and using (A.2)(a) for u0 we obtain

KCx ¼
r2H 2

2lf~ee~ee0c
0
b sinh

2 H=LDð Þ
1

6

�
þ L2D
8H 2

cosh
2H
LD

� ��
� LD
2H

sinh
2H
LD

� ���
: ðA:4Þ

Finally, adopting the same procedure, the electro-osmotic permeability KE is the averaged of the velocity

component satisfying

lf
o2v0x
oy2

¼ ~ee~ee0
d2u0

dy2
¼ ~ee~ee0RT

F
d2u0

dy2

in which after integrating twice and making use of the symmetry at y ¼ 0 and no-slip condition at y ¼ H
gives

lf
ov0x
oy

¼ ~ee~ee0RT
F

du0

dy
; v0xðyÞ ¼

~ee~ee0RT
lfF

ðu0ðyÞ � u0ðHÞÞ:

Hence, after averaging and using (A.2)(a) we have

1

H

Z H

0

v0x dy ¼ ~ee~ee0RT
HlfF

Z H

0

ðu0ðyÞ � u0ðHÞÞdy ¼ ~ee~ee0RTr
2c0bF 2lfH

1

�
� 1

LD
coth

H
LD

� �
H
�

ðA:5Þ

which yields

KEx ¼
rLD
lf

LD
H

�
� coth H

LD

� ��
: ðA:6Þ

The one-dimensional solutions discussed here resemble in form those presented in e.g. Gross and Osterl�ee
(1968), Fair and Osterl�ee (1971), Sasidhar and Ruckenstein (1981, 1982) and Yang and Li (1998). Further,
denoting f ¼ uðHÞ the zeta potential, when the thickness of the e.d.l. is small compared to the interlayer
spacing H, the Helmholtz–Smoluchowski model can be recovered from (A.6). Under this assumption the

first term in the integral in (A.5) involving u0ðyÞ is neglected compared to the second. We then have

KEx ¼
~ee~ee0RT
HlfF

Z H

0

u0ðHÞdy ¼ ~ee~ee0RT
lfF

u0ðHÞ ¼ ~ee~ee0f
lf

ðA:7Þ

which is nothing but the Smoluchowski formula (Hunter, 1981; Coelho et al., 1996; Shang, 1997).

A.3. Movement of the ions

We now derive the one-dimensional linear version of the homogenized diffusion equations (52). To this

end denote D�
�x the scalar longitudinal diffusion coefficients and define a ¼ �hu0if ¼ �r=2Fc0bH . Setting

f þ ¼ f � ¼ 0 in (71) and linearizing the exponential in the homogenized diffusion coefficient we obtain

D�
�x ¼ D�xhexpð�u0Þif � D� 1ð � aÞ:

Thus, the linearized one-dimensional form of (52) reads

o

ot
nfc0b 1ð
�

� aÞ
�
¼ o

ox
nfD� 1ð
"

� aÞ oc0b
ox

 
� c0b

ow
0

ox

!#
: ðA:8Þ

A.4. Electroneutrality condition

In the case of a stratified microstructure, further consequences of the electroneutrality condition (48)
combined with charge conservation (54) can be explored to eliminate the streaming potential in terms of the

bulk concentration in both Darcy�s law and the diffusion equation. The one-dimensional form of (55) reads
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nf
ohq0if

ot
þ oJ 0

ox
¼ 0:

By combining the above result with the local electroneutrality condition (48) (with r constant) leads to
oJ 0=ox ¼ 0. Further, together with the homogeneous boundary conditions for the electric current in (73)
this yields J 0 ¼ 0. Using this result in the one-dimensional linearized form of (53) we get

Nþ � N� ¼ 0 with N� ¼ FnfDþ 1ð � aÞ oc0b
ox

 
� c0b

ow
0

ox

!
:

The above constraint leads to the following relation between the gradients of the bulk concentration and

streaming potential

ow
0

ox
¼ � 1þ að ÞDþ � 1� að ÞD�

1þ að ÞDþ þ 1� að ÞD�

1

c0b

oc0b
ox

ðA:9Þ

in which when combined with (A.8) and adding the result over cations and anions leads to

o

ot
nfc0b
� �

¼ 2 o

ox
nf

1þ að Þ 1� að ÞDþD�

1þ að ÞDþ þ 1� að ÞD�

oc0b
ox

� �
: ðA:10Þ

Further, the same procedure can be adopted to eliminate the electro-osmotic component in the one-

dimensional form of Darcy�s law. This yields

v0x
� �f ¼ �KP

op0b
ox

� Keff
C

oc0b
ox

ðA:11Þ

with

Keff
C 	 KC � KE

1

c0b

1þ að ÞDþ � 1� að ÞD�

1þ að ÞDþ þ 1� að ÞD�
: ðA:12Þ

It should be noted that the sign of the effective osmotic coefficient Keff
C may change according to the

magnitude of the terms in the r.h.s. of (A.12). In the flow regime characterized by Keff
C > 0, the chemical

component of the filtration velocity is dictated by the so-called anomalous (reverse) osmosis which follows

the negative of the concentration gradient. Conversely, when the electro-osmotic component (last term in

the r.h.s. of (A.12)) prevails, flow is governed by a regular osmosis process, following the concentration

gradient.

A.5. Modified Terzaghi’s decomposition

We now derive a sharper representation for the modified Terzaghi�s decomposition (67) in the particular
case of stratified microstructure. From (27)(b) and (62) the reduced representations of s0M and P0

d are

s0M ¼ ~ee~ee0
2

ðE0nÞ
2
n

�

 n� ðE0nÞ

2
t 
 t



;

P0
d ¼ p0

 
� ~ee~ee0
2

ðE0nÞ
2

!
n
 nþ p0

 
þ ~ee~ee0
2

ðE0nÞ
2

!
t 
 t:

ðA:13Þ

The electrostatic component of the disjoining pressure P0
d is defined as the projection of P0

dn onto the
normal direction to the solid phase, i.e. P0

d 	 P0
dn � n (Derjaguin et al., 1987). We then have

P0
d ¼ P0

dn
 nþ P0
d

�
þ ~ee~ee0ðE0nÞ

2


t 
 t ðA:14Þ
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in which when combined with (16) and (A.2) and linearizing up to second order gives

P0
d ¼ p0 � ~ee~ee0

2
ðE0nÞ

2 ¼ 2RTc0b coshu0
�

� 1
�
� ~ee~ee0
2

ðE0nÞ
2

� RTc0bðu0Þ
2 � ~ee~ee0ðRT Þ2

2F 2
ðE0nÞ

2

¼ RTr2

4F 2c0bL
2
D sinh

2ðH=LDÞ
cosh2

y
LD

� �"
� ~ee~ee0RT
2F 2c0bL

2
D

sinh2
y
LD

� �#

¼ RTr2

4F 2c0bL
2
D sinh

2ðH=LDÞ
¼ r2

2~ee~ee0 sinh
2 H=LDð Þ

:

ðA:15Þ

The above equation reproduces the well known result of the e.d.l. where P0
d is constant in the interlayer

spacing. Further, applying (A.13) to the normal and using (A.15), the traction boundary condition in the

cell problem (65) for u1p reduces to csEyðu1pÞn ¼ �P0
dn (constant). Recalling definition (68)(b) for P0

S, the

averaged solution of (65) for the parallel particle arrangement is P0
S ¼ P0

dn
 n. Thus, defining for swelling
pressure P0

S as the projection P0
S 	 P0

Sn � n this yields P0
S ¼ P0

d . It remains to obtain the physical inter-

pretation of the tangential component of the tensor P0
d in (A.14). To this end we combine this result with

the constitutive law r0f ¼ �p0I þ s0M ¼ �ðp0b þ p0ÞI þ s0M ¼ �p0bI � P0
d to obtain

r0f ¼ �p0nn
 n� p0t t 
 t

with the normal and tangential components given as

p0n ¼ p0b þ P0
d ; p0t ¼ p0b þ P0

d þ ~ee~ee0ðE0nÞ
2
:

The interfacial tension of the electrolyte solution cfs is defined as the excess quantity (see e.g. Toshev and
Ivanov, 1975)

c0fs ¼ �
Z H

�H
ðp0t � p0bÞdh ¼ �

Z H

�H
ðp0t � p0nÞdh �

Z H

�H
ðp0n � p0bÞdh ¼ �~ee~ee0

Z H

�H
ðE0nÞ

2
dh �

Z H

�H
P0

d dh:

ðA:16Þ

Denote A the total surface area of the particles within each unit cell and afs 	 jAj=jY j the specific area
density per unit volume. Using (A.16) in (A.14), the averaged disjoining tensor hP0

di can be represented as
(recall that P0

d ¼ P0
S ¼ constant)

hP0
di ¼ nfP0

Sn
 n� afscfst 
 t: ðA:17Þ

Hence, the macroscopic physico-chemical tensor P0 in (68) can be represented as

P0 ¼ nsP
0
S þ hP0

di ¼ P0
Sn
 n� afscfst 
 t: ðA:18Þ

The above representation for P0 in the stratified arrangement aims at decomposing this quantity into two

components acting normal and tangential to the solid surface. In contrast to the tangential component

afscfst 
 t, the normal one P0
Sn
 n is an effective quantity as it is directly responsible for the expansion/

shrinking of the particles. Thus, when combined with (67) the decomposition (A.18) furnishes an alternative
form of expressing the modified Terzaghi�s principle wherein physico-chemical stresses appear decomposed
explicitly into their effective and non-effective components.
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Appendix B. Dimensionless unknowns

In the analysis that follows we rewrite the previous one-dimensional system applied to the clay liner

example in dimensionless form. The corresponding dimensionless variables are defined relative to reference
quantities. Denoting the former set by the superscript � and the latter by the subscript ref, we then have e.g.
c�b ¼ c0b=cref , p�b ¼ p0b=pref , P� ¼ P0

S=pref . To simplify the following notation and reduce the number of
subscripts, the longitudinal component of a vectorial quantity is denoted with the same symbol of the

corresponding vector (or tensor) without the boldface. For the clay liner example the reference values

fcref ; prefg are selected as the components which appear in the non-homogeneous boundary conditions (73)
on C1, i.e. cref ¼ c� and pref ¼ h. The dimensionless streaming potential is defined as w� ¼ w ¼ Fw0=RT . In
addition, the dimensionless macroscopic coordinates are defined as x� ¼ x=Lref and y� ¼ y=Lref , where Lref is
chosen as the macroscopic height of the liner Lref ¼ L0. Also the reference interlayer spacing Href is chosen
of the value of H initially before the chemo-mechanical consolidation. Whence, the reference hydraulic

conductivity is given as KPref ¼ H 2
ref=3lf . Further, defining the dimensionless time t� ¼ ðk þ 2lÞKPref t=L2ref

and the longitudinal components of the Darcy velocity and solid displacement as v�D ¼ v0DLref=ðKPrefprefÞ and
u� ¼ uðks þ 2lsÞ=prefLref , the unidimensional dimensionless forms of Darcy�s law along with overall mass
balance and equilibrium condition read

v�D ¼ �K�
P

op�b
ox�

� K�
C

oc�b
ox�

;

ov�D
ox�

þ o2u�

ot�ox�
¼ 0;

o2u�

ox�2
� op�b

ox�
¼ 0;

ðB:1Þ

where

K�
P ¼ KP

KPref
; K�

C ¼ crefKeff
C

KPrefpref
:

In the last equation in (B.1), the effects of the disjoining pressure were not included as it only acts in the

transversal direction in the stratified arrangement. Finally, the dimensionless ion diffusion equation (A.10)

is given by

o nfc�ð Þ
ot�

¼ o

ox�
nfD� oc

�

ox�

� �
with

D� ¼ 1

KPref prefðk þ 2lÞ 2
1þ að Þ 1� að ÞDþD�

1þ að ÞDþ þ 1� að ÞD�

� �
:
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