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Abstract

A macroscopic model for highly compacted expansive clays composed of a charged solid phase saturated by a binary
monovalent aqueous electrolyte solution is derived based on a rigorous scale-up of the microstructural behavior. The
homogenization technique is applied to propagate information available in the pore-scale model to the macroscale.
Macroscopic electrokinetic phenomena such as electro-osmotic flow driven by streaming potential gradients, electro-
phoretic motion of mobile charges and osmotically induced swelling are derived by homogenizing the microscopic
electro-hydrodynamics coupled with the Nernst-Planck and Poisson-Boltzmann equations governing the flow of the
electrolyte solution, ion movement and electric potential distribution. A notable consequence of the upscaling proce-
dure proposed herein are the micromechanical representations for the electrokinetic coefficients and swelling pressure.
The two-scale model is discretized by the finite element method and applied to numerically simulate contaminant
migration and electrokinetic attenuation through a compacted clay liner underneath a sanitary landfill.
© 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Electrochemical interaction between colloidal particles and an aqueous solution is a central subject in
colloid science. This phenomenon is typical of expansive media including clays, shales, polymers gels,
corneal endothelium and connective biological tissues. Clay minerals are extensively used in a wide range of
applications. They are a key component in the formulation of ceramic products and drilling fluids. They are
widely distributed in the earth’s crust and play a crucial role in many aspects of nutrition on earth. Swelling
of smectitic clay soils also have undesired consequences when they heave upward upon hydration (or shrink
upon desication) causing damage to the foundations of buildings. Shales have been responsible for many
wellbore instability problems. Due to their low hydraulic conductivity, plasticity, swelling and adsorptive
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capacity for contaminants, bentonitic based compacted clays have been used as sealing materials to inhibit
the migration of contaminants to the environment. In order to understand the effects of the complex
physico-chemical interaction of compounds with the clay surface and their correlation with the macro-
scopic response of the clay buffer it becomes essential to develop accurate macroscopic constitutive models
capable of capturing and representing in an averaged fashion the intriguing and challenging microscopic
features inherent to the physical-chemical interactions between the macromolecules and interlayer water.

Each smectitic clay mineral is a 2:1 layer composed of an octahedral aluminia sheet sandwiched between
two silica tetrahedral sheets forming an unit layer. The units are stacked together to form what is known as
the crystal lattice. An important property inherent to many colloidal clay minerals is the negative charge of
their surface which is a consequence of the isomorphous substitutions of certain atoms of their structure
and the presence of imperfections within the interior of the crystal lattice. The negative potential is com-
pensated by the adsorption of cations on the surface forming the inner compact layer commonly referred to
as the immobile Stern layer. Nevertheless the majority of the excess of positively charged counter-ions are
located in the electrolyte aqueous solution externally to the crystal forming an outer diffuse layer composed
of mobile charges. Together with the fixed charged groups of the solid matrix these ions form the so-called
electrical double layer (e.d.l.). The equilibrium structure of completely dissociated electrolytes around the
colloids is calculated by classical electrostatics, where charge distribution and electrical field are governed
by a Poisson-Boltzmann equation (see e.g. Hunter, 1994; Olphen, 1977).

When advected by the streaming velocity of the fluid, the excess in mobile charge population in the
counter-ion atmosphere leads to macroscopic observed electrokinetic phenomena such as streaming cur-
rents, resulting from the influence of fluid movement upon charge flow. Moreover, to conserve charge, the
movement of the net charge generates an electric potential, often referred to as streaming potential, which
gives rise to other macroscopic electrokinetic phenomena. The spatial variability of this quantity engenders
electrophoretic movement to the mobile charges inducing a conduction Ohmic current which opposes the
streaming current and consequently slows down the counter-ions of the diffuse double layer. Due to the
viscous drag interaction, the ions pull the liquid with them resulting in a concomitant electro-osmotic
seepage flow opposing the pressure-gradient driven flow. This electrokinetic coupling has been commonly
referred to as the electro-viscous effect as its overall influence upon the flow is usually treated through an
increase in the viscosity of the liquid (see e.g. Ren et al., 2001; Hunter, 1981; Sherwood et al., 2000). In
addition to electrokinetic phenomena, flow driven by chemical-osmotic effects (gradient of the Nernst
potential) is also manifested particularly when the salinity varies spatially (Gu et al., 1998a).

Electrokinetic and chemical-osmotic effects are also manifested in the appearance of physico-chemical
stresses in the solid phase which cause the expansion/shrinking of the clay lattice. When dry smectite is
placed in a moist atmosphere, the montmorillonite superimposed layers are available for hydration and
cation exchange by uptaking water in the interlayer. Swelling is the moving apart or disjoining of the clay
particles until they reach their equilibrium separation under a certain overburden pressure (Derjaguin et al.,
1987; Israelachvili, 1991). Macroscopically, the overburden pressure that must be applied to a saturated
mixture of clay and interlayer water to keep the layers from moving apart is the experimentally observed
swelling pressure (Low, 1987).

During the past few decades a significant amount of research has been developed toward the derivation
of models capable of capturing coupled electro-chemo-hydro-mechanical effects in expansive porous media.
In addition to the classical phenomenological approaches developed at the macroscale (see e.g. Philip, 1969;
Smiles and Rosenthal, 1968; Kim et al., 1992), coupling phenomena can naturally be described within the
framework of the Mixture Theory and Thermodynamics of Irreversible Processes. In this approach, the
interaction between matter flux, electric charge and chemical osmosis are typical phenomena which can be
properly embedded in the framework of Onsager’s reciprocity relations (see e.g. Lai et al., 1991; Huyghe
and Janssen, 1997; Gu et al., 1998a,b; Heidug and Wong, 1996; Hueckel, 1992b; Murad, 1999; Mow et al.,
1998; Levenston et al., 1998; Bennethum et al., 2000; Zhou et al., 1998).
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Despite the widespread use of non-equilibrium thermodynamics and Onsager’s reciprocity relations in
the macroscopic modeling of electro-chemo-mechanical coupling phenomena, to the authors knowledge
very limited accomplishments have been achieved toward the incorporation of the morphology and clay
microstructure in the macroscopic model. As mixture theoretic approaches are directly conducted at the
macroscale, the complex microstructural solid—fluid interactions are represented in an averaged fashion by
the electrokinetic coefficients whose magnitudes are usually obtained seated on experimental evidence. On
the other hand it has been advocated that the clay microstructure plays a paramount importance in many
physico-chemical aspects observed at the macroscale. For example, it is well known that the swelling
pressure is strongly dictated by particle orientation and anisotropy (Anandarajah, 1997). Moreover, some
discrepancies between the constitutive relation for the macroscopic swelling pressure and its microscale
counterpart, commonly referred to as Derjaguin’s disjoining pressure (Derjaguin et al., 1987) have been
observed. Although this latter microscopic quantity has incorporated both chemico-osmotic and Maxwell
stresses (Derjaguin et al., 1987; Dahnert and Huster, 1999), the dependence of the macroscopic swelling
pressure on salt concentration has not incorporated similar effects, being commonly identified with the
macroscopic osmotic pressure (see e.g. Barbour and Fredlund, 1989).

Furthermore very little information has been available to identify some of the macroscopic electrokinetic
coefficients. For instance, when the porous medium is composed of a bundle of capillary tubes with di-
ameter large compared to the thickness of the e.d.l., the electro-osmotic permeability has been identified as
proportional to the zeta potential (the electric potential in the plane of shear which delimits the domains
occupied by the fixed and mobile charges) in terms of the Helmholtz—Smoluchowski model (see e.g. Shang,
1997; Hunter, 1981; Coelho et al., 1996). However, very little is known on the behavior of this coefficient
when the Helmholtz—Smoluchowski theory is no longer valid, for example for a random pore geometry, or
even when the diameter of the tubes is of the order of the Debye’s length. In this latter case extensions of the
Helmholtz—Smoluchowski formula have been proposed based on empirical correction factors aiming at
capturing the influence of the overlapping between the e.d.l. upon the magnitude of the electro-osmotic
permeability (Hunter, 1981).

The aim of the paper is to derive a macroscopic model for compacted swelling clays capable of estab-
lishing a precise correlation between the macroscopic parameters and microscopic electro-hydrodynamics.
The microscale governing equations consist of the modified Stokes flow coupled with Nernst—Planck/
Poisson—Boltzmann equations (Samson et al., 1999) to describe the movement of the electrolyte solution,
ion transport and local electrostatics within the fluid. Assuming local periodicity and scale separation, we
then adopt the homogenization procedure (Sanchez-Palencia, 1980) to derive macroscopic equations via
formal application of matched asymptotic expansion techniques. Among other effects, a notable feature of
the homogenization procedure is that it provides the correct physics underlying the magnitude of each
macroscopic electrokinetic parameter. Such information is carried out by solving unit cell problems which
furnish knowledge on the microstructural behavior of the swelling medium. To the authors opinion, this
enhanced information may be of utmost importance in providing complementary information to validate
experimental data.

The two-scale model is applied to describe chemo-mechanical induced consolidation of a clay liner
underneath an engineered landfill. The fully coupled non-linear macroscale model is discretized by the finite
element method. Simultaneously the microscopic behavior is incorporated by solving the local unit cell
problems for a given idealized stratified microstructure. The solution of the local problems is sought at each
step and used to provide updated information on the macroscopic electrokinetic coefficients and swelling
pressure. Numerical results illustrate the coupling between the migration of leachates through the com-
pacted clay liner and changes in porosity and permeability due to the suppression of the e.d.l. within the fine
structure as the concentration of the contaminant increases in time. Further, numerical results also illus-
trate the effects of the electro-osmotic attenuation upon fluid flow which is depicted in terms of the spatial
variations of the streaming potential.
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2. Microscopic model

At the microscale we consider an uniformly negatively charged compacted montmorillonite saturated by
a continuum dielectric aqueous solution with binary symmetric electrolytes Na™ and CI~. The solvent is
considered a dilute solution with the ions treated as point particles at infinite dilution such that steric and
hydration effects are neglected. In what follows we begin by presenting the micromechanical model de-
veloped in Moyne and Murad, 1999, in press governing fluid flow, ion transport, electric potential distri-
bution and particle deformation. Subsequently, we exploit a decomposition of the electric potential
proposed in Sasidhar and Ruckenstein (1981, 1982) and Bike and Prieve (1992) which leads to the ap-
pearance of the streaming potential. We then exploit this decomposition and rephrase the governing
equations in a more appropriate form which is capable of capturing phenomena driven by streaming po-
tential gradients, such as macroscopic electro-osmostic flow in Darcy’s law and the electrophoretic mi-
gration of the ions.

2.1. Electrostatics

Let Qf and Q be the microscopic domains occupied by the fluid and solid and let I" denote the common
interface. Further let {¢*, ¢} and {®, E} designate the pairs of molar concentrations of cations/anions and
electric potential/electric field respectively. In classical electrostatics @ and E are governed by the Poisson
problem (see e.g. Landau and Lifshitz, 1960)

§5V-E=gq, 0
E=-V& in O,

where & and ¢ are the vacuum permittivity and the relative dielectric constant of the solvent and ¢ is the net
charge density. Denoting F and z the Faraday constant and the valence (z =z, = —z_ for symmetrical
covalent electrolytes), by definition ¢ is the product between the molar charge and the concentration dif-
ference between cations and anions, i.e. ¢ = zF(c¢™ —¢7).

2.2. Modified stokes problem

Assuming the electrolyte solution incompressible and newtonian, the viscous flow is perturbed by a body
force term of Coulomb type ¢E which governs locally the viscous interaction between the ions and the fluid
(see e.g. Eringen and Maugin, 1989). Denoting p, v and p the viscosity, velocity and thermodynamic
pressure, the modified Stokes problem reads

p AV — Vp = —qE = gV O, 2)
V:v=0 in Q,

where gravity, convective and inertial effects have been neglected. The above momentum balance can also
be rephrased in terms of the Cauchy stress tensor of the electrolyte solution oy as

V'O’f:O iIle7

3
or = —pl + 26 () + 7, G)

where I is the unit tensor, &(v) the symmetrical part of Vv and 7y is the Maxwell stress tensor (Landau and
Lifshitz, 1960)

1

T = 70 (2E® E — EI) (4)
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with ® denoting the tensorial product between vectors. From (1) and (4) one may easily note that
V.tv =¢E.

2.3. Movement of the ions

Denote 2. the binary water—ions diffusion coefficients, T the absolute temperature (assumed constant)
and R the universal ideal gas constant. The convection—diffusion equations governing ion transport are
dc* D.c*
- Vui) =0, (5)

—_— .i—-
at+V (cFv) =V (RT

where u and u~ are the molar electrochemical potentials of cations and anions which under the dilute
solution approximation are given as (see e.g. Callen, 1985; Lyklema, 1993)

W = +zF® + RT logc™. (6)

Denoting @ = F®/RT the dimensionless electric potential and assuming monovalent ions (z = 1), from (6)
we have

1 . V& -
Further, using (7) in (5) we obtain the Nernst-Planck equation (Samson et al., 1999)
+
V() = V- [2.(Ve £ V)] = V- (7 expl 5 D)V (¢ exp( + D). (8)

The r.h.s. of (8) shows that ion diffusion is governed by the sum of a Fickian term and an electrophoretic
component which governs the movement of the ions under the effects of the electric field.

2.4. Deformation of the solid particles

Assume that the clay particles are linear elastic and isotropic with Lamé constants A; and p,. Denoting #
and o the displacement and stress tensor of the clay particles, the classical elasticity problem reads

V.6,=0 1in Q,
6s = AV -ul +2u6(u). 9)

2.5. Boundary conditions

Denote n the unit normal exterior to Qf and let ¢ < 0 be the fixed surface charge of the solid particles.
Considering I' an impervious solid—fluid interface, together with the no-slip condition, continuity of the
normal component of the stress tensor, and the relation between the electric field and surface charge density
we have the following boundary conditions

Ou
D.c*Vut-n=0 =— onTl
oY= V=Y ’ (10)
osn = o¢n, £6FE -n=—o,

where o and ¢ are related through the overall electroneutrality condition

/quf=§§0/V~Ede=§§0/E-ndr:—/0'dr. (11)
Q Q r r
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3. Alternative microscale formulation

By invoking the classical results of electrokinetics governing flow and charge transport in capillary tubes
(see e.g. Gross and Osterlé, 1968; Fair and Osterlé, 1971; Sasidhar and Ruckenstein, 1981, 1982; Yang and
Li, 1998) and comparing them with the corresponding equilibrium results of the e.d.l. theory (Olphen, 1977;
Hunter, 1994) one may note that variables such as @, E, p and ¢* incorporate quantities of completely
different nature. For example, the fluid pressure/electric potential {p, ®} incorporate the bulk phase
pressure/streaming potential (which are inherent to the bulk solution) and Donnan osmotic pressure/e.d.l.
potential which are properties typically associated with the e.d.l. The former pair varies slowly with the
fluid flow whereas the latter varies strongly across the pore even at equilibrium. Thus, the preceding mi-
cromechanical description can be enhanced if we decompose these variables into “slow” and “fast”
components and reformulate the local description in terms of the decomposed quantities.

3.1. Streaming potential and bulk concentration

Following the approach proposed in Sasidhar and Ruckenstein (1981, 1982) and Bike and Prieve (1992)
in order to split the effects in the electric potential which arise from typical e.d.l. and those induced from
fluid flow, we write @ in the form

=g+ (12)

To characterize ¢ and s, the former aims at representing a potential which varies across the pore domain,
purely related to double layer effects, whereas the latter component is selected to play a similar role of the
so-called streaming potential which develops in order to maintain electroneutrality (Yang and Li, 1998;
Sasidhar and Ruckenstein, 1981). We then characterize i as an electric potential inherent to the species of a
bulk solution which is constructed locally at thermodynamic equilibrium with ions. Denote ¢, the con-
centration associated with the local bulk solution (same for both co-ions and counterions) and define
Ui = £Fy + RTlogcy, the corresponding electrochemical potential, which by construction is given as
wii = p*. Note that rather than non-ionic, a streaming potential i is assigned to the bulk solution and the
characterization of ¢, relies in the absence of the excess of one component relative to the other
(cy = ¢ = cp) and in the consequent absence of a net charge density (¢, = F(c —¢;) = 0).

Introducing the dimensionless quantities = Fo/RT and y = Fy/RT and using (6) (with z = 1), the
equality between the chemical potentials furnishes

fy = £Fy + RTlogc, = " = £F® + RT logc™
in which along with (12) leads to the following generalized Boltzmann distributions
ct = cpexp(FP £ V) = ¢y, exp(F9), q = —2Fcy sinh @. (13)

An important consequence of (13) is the extension of the Boltzmann distributions to the non-equilibrium
case by subtracting y from the overall potential @. Thus, the spatial distribution of \/ assigns reference
values of the electric potential to which the excess ¢ = @ — \ plays the role of a potential purely associated
with e.d.l. effects. In contrast to ¢, the streaming potential is tied up directly to the macroscopic flow and
transport processes and to the enforcement of the electroneutrality condition.

3.2. Auxiliary concentrations
The Nernst-Planck model (8) can also be represented in terms of classical non-linear convection—dif-

fusion equations (in the absence of the electrophoretic term due to V®) by simply adopting a change in
variables and making use of auxiliary concentrations. In a similar fashion to the bulk concentration ¢, these
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auxiliary variables, denoted by ¢f and ¢;, are introduced as “fictitious” NaCl concentrations in a non-ionic
solution which are constructed locally at equilibrium with cations and anions i.e. with the same electro-
chemical potential. The relations between ¢* and ¢ can be derived by defining the chemical potentials of
the neutral species yif = RT logcf (Callen, 1985). By construction and using definition (6) (with z = 1), the
local equilibrium conditions uf = p* give

RTlogc; = £F® + RTlogc*
which implies in the local Boltzmann transformations for ¢;
cf =ctexp(®@), ¢ =c exp(—P) cf = coexp(£y). (14)

Hence, ¢ = ¢* when @ = 0 which characterizes ¢f as concentrations of non-ionic species at local thermo-
dynamic equilibrium with the ions. Using (14) in (8) and in boundary condition (10)(a) we obtain that ¢ are
governed by

% [exp(F P)ci | + V- [exp( F ®)cpv] = V- (Dsexp( F P)Vey) (15)
along with the homogeneous Neumann condition D exp(F®)Vcf - n =0 on I'. As we shall illustrate next,
due to the resemblance with classical convection—diffusion equations, the above form is more convenient to
homogenize (Auriault and Adler, 1995). Conversely, we have characterized a “true” bulk solution by the
absence of excess of one species relative to another, i.e. in a bulk solution ¢ = ¢; = ¢; which leads to the
absence of a net charge density (¢r = F(c{ — ¢; ) = 0). Clearly from (14) the concentrations ¢i do not fulfill
this requirement and therefore they correspond to hypothetical concentrations which are not associated
with a bulk solution and behave discontinuously across membranes separating the electrolyte solution from
an outer bulk fluid.
To summarize we then have the Boltzmann relations

* = ctexp(FP) = coexp(FP F ¥) = ¢, exp(F0).

Finally it should be noted that for the particular case of absence of fluid flow and ion transport, when the
electrolyte solution is at equilibrium which an outer saline bath of concentration c.q, the classical equili-
brium distributions of the e.d.l. theory shall be recovered from our results by simply setting = cte = 0,
@ =7 and ¢f = cp = coq.

3.3. Bulk fluid pressure

Likewise c* and @, the pressure p varies across the fluid domain at equilibrium and its magnitude in-
corporates the effects of the bulk phase pressure of the outer solution p, and Donnan osmotic pressure 7,
which for dilute solutions is classically defined in terms of the Van’t Hoff relation 7 = RT(¢™ + ¢~ — 2¢p)
(Donnan, 1924; Huyghe and Janssen, 1997). Thus a decomposition similar to (12) can be adopted for p
which can also be identified with a pointwise extended definition for p, within the fluid phase. To ac-
complish this task we begm by rewriting the Coulomb term in the modified Stokes problem (2) as
—qE =gV =V( fo )d¢). Using this result, the pressure gradient along with the Coulomb term in (2)
can be rewritten as Vp +4¢Vo=V(p+ fo qd¢) which suggests this quantity as the driving force for fluid
flow. Hence, we identify this quantity with a local apparent bulk phase pressure p, = p + fo gd¢ which
plays a similar role of the classical bulk pressure of a Stokesian fluid. To confirm this statement we show
that the above definition is equivalent to subtracting the osmotic pressure 7 from p. In fact, using (13) in the
above definition we have
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® ®

pbzp+/ qdqo:p—ZFcb/ sinhpdp = p — 2RTep(coshp — 1) =p— RT(c" +c¢ —2¢,)=p—=
0 0

(16)

which shows the desired result. Hence, likewise the bulk concentration ¢, the reference quantity p, plays

the role of the pressure of a bulk fluid constructed locally at hydrodynamic equilibrium with the electrolyte

solution (this pressure has been also termed solvent pressure (see e.g. Sasidhar and Ruckenstein, 1982).
Using (12), (13) and (16), in terms of p, the modified Stokes problem (2) can be rewritten as

U AV — Vpy, — 2RT(cosh @ — 1)Vey, = 2RTcy, sinh V@ — 2Fcy, sinh oV @
= 2RTcy, sinh @V (@ — @) = —2RTc, sinh V. (17)

4. Homogenization

In this section we adopt the homogenization procedure to upscale the microscopic problem to the
macroscale. In this framework the macroscopic swelling medium is idealized as a bounded domain Q° with
a periodic structure. Following the general framework of homogenization (see e.g. Sanchez-Palencia, 1980),
introduce the microscopic characteristic length-scale associated with the cell (/), for which microscopic
heterogeneities are relevant, and the macroscopic length-scale related to the overall dimensions of the clay
(L) where the heterogeneities are invisible. Define the perturbation parameter as the ratio e = //L. Make
use of the scale separation assumption wherein the characteristic length / is small in comparison with the
macroscopic length scale L such that e < 1. Consider Q° composed of spatially repeated unit disjoint
parallelepiped periods, Y*, congruent to a standard Y formed by the union of cell domains ¥; and ¥; oc-
cupied by the clay particles and electrolyte solution respectively. Denote ©; and € the fluid and solid
subdomains of Q¢ given by the union of cell domains e}; and €Y, respectively whereas the interface I'° is
given by the union of 0(eY) interfaces. Our starting point, e = 1, corresponds to our microscopic model.
The e-model in Q° consists of properly scaled equations on a lattice of copies €Y. In order to determine a
macroscopic equivalent description, the asymptotic behavior of the periodic solution of the microscopic
equations is sought as the scale of the inhomogeneity decays asymptotically when the parameter € — 0.

4.1. Order of magnitude of the coefficients

An essential feature inherent to any upscaling technique is the proper scaling of the dimensionless
quantities which appear in the microscopic description (Auriault, 1991). In order to establish the order of
magnitude of each coefficient we begin by rewriting the micromodel in dimensionless form and then we
estimate the set of non-dimensional numbers which characterize the local description. Begin by assigning
the subscript “ref” to the reference value for which the corresponding microscopic quantity is normalized.
The reference characteristic length /.. is chosen of the order of the macroscopic medium, i.e. £, = L such
that the macroscopic length L is used to normalize the spatial differential operators. Likewise, the time scale
is normalized with respect to tr = L?/%+. The orders of magnitude of the reference velocity v.r and
pressure p.r are based on classical dimensional analysis of Darcy’s law which shows vwr = *prer/ L
(Auriault, 1991). The choice of the reference electric field E, is based on boundary condition (10)(d) which
suggests E..s = 0/£8&. Furthermore, since @ and E are locally related by (1), choose @, = ¢E,r. The choice
of the reference concentration ¢, is based on the electroneutrality condition (11). Since the volume integral
of the net charge ¢ = F(ct — ¢7) is neutralized by the surface integral of the charge density o, the con-
centrations vary 1/¢ faster than the surface charge density and thus we select c,.r = /(F¥). The selection of
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the reference displacement of the solid phase u.r is based on (10)(c) expressing continuity of the normal
component of the stress tensor on I'. Denoting CE; = 0.58¢)E2; the reference quantity for the Maxwell
stress tensor, using the constitutive equations for the stress tensors (3) and (9) and the relation between v,
and prr, we choose (As + 24 )urer /L = prer + fietrer /] + CE = (1 4 €)prer + CE; = prer + CE;. Thus, by re-
phrasing the microscopic system in dimensionless form, the following dimensionless quantities naturally
appear

2 L

ref’

éé()pref ’ 2= m.

The number Pe is the classical Péclet number which measures the ratio between convective and diffusive
effects. The number N quantifies the ratio between the electrical and thermal molar energies (which are of
the same order of magnitude) whereas the parameters M, and M, measure the magnitude of Maxwell
stresses relative to the fluid pressure p in the constitutive equation (3) for a; (recall that 62 /(£&)) = £&yEr)
and to the stresses in the solid particles 65 in boundary condition (10)(c). From the conventional e.d.l.
theory, Maxwell stresses counterbalance the variations in osmotic pressure in the fluid domain (Derjaguin
et al., 1987) and therefore the magnitude of the components of 7y is of the same order of both fluid pressure
p and particle stresses a;. Finally we shall consider the case where convection effects are of lower order of
magnitude compared to diffusion such that the Péclet number is assumed small. Hence we adopt the fol-
lowing estimates

Pe=0(e), N=0(1), M =0(1), M =01).

7 T ERRT '

Po— Urer L N Fal a? g6 FE

We remark that the above estimate for Pe does not place any constraint in the analysis. For simplicity it can
be shown, using the analysis developed in Auriault and Adler (1995), that when adopting the above esti-
mate for Pe, ion convective-diffusive motion is characterized by only one time scale ¢ = L?/D.. associated
with the diffusion process. Likewise, the other ranges of Pe where advection effects are more pronounced
can also be incorporated in the analysis by pursuing the approach proposed in Auriault and Adler (1995).

Making use of the above scaling laws for the coefficients the micromechanical model is rephrased below
with a formal €” factor to indicate the order of magnitude of each term. Denoting J,; the Kronecker delta
symbol and ¢, the fourth-order elastic modulus tensor of the solid phase with components c¢;i; = 4005 +
U (00 + 6;0,) we then have in Q¢

END = —%, E=—-eV®, ¢ =cfexp(FP), g=F(c"—c),
0

Voo =0, o= _p1+82ﬂ (RE ® E — EI) + 2E1,6(v),

V.v=0, E AV = Vpy + 2RT(cosh @ — 1)Ve, — 2RTey, sinh oV,

(18)

%[exp(qi@)cﬂ + €V [exp (F P)cfv] =V - (Diexp (F D) Vey)

and in Q
V-.6,=0, 65 = ¢;&(u)

and on the fluid—solid interface I"

o

, v:a—u Diexp(F ®)Ve; -n=0,

Vo .- n=
€ n %

[S°2}

€

on = ( —pl + % (QE®E—EI) + Zez,uféa(v)>n = o.n = ¢,&(u)n.
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It should be noted that at the microscale, electrical effects in the electrolyte solution induce stresses in the
solid phase through the Maxwell component in the above traction boundary condition.

4.2. Matched asymptotic expansions

Following the usual framework of homogenization begin by introducing microscopic and macroscopic
coordinates associated with the cell () and the overall dimensions of the swelling medium x = ey. Consider
each quantity depending on both scales in the form f = f(x,y) and postulate two-scale asymptotic ex-
pansions in terms of the perturbation parameter e for the set ¥ of unknowns {u,a,} and {e¢,v,py, @,

q)vlljaEverciacfiaqnui}
o=y e Y+ (19)

with the coefficients ' spatially periodic in y over a unit cell Y = ¥; U Y. Insert the expansions (19) into the
set of microscopic governing equations with the differential operator 9/, replaced by 8/0, + ¢ '9/9,. After
a formal matching of the powers of ¢, we obtain a recursive system of cell problems parametrized by x. For
the fluid in ¥; we have

£, P = éq—éo, (20)
E' = V(" + "), 21)
@ = ¢’ +y°, (22)
v, - vV =0, (23)
V. vV 4V, v =0, (24)
V, e} =0, (25)
V.-6)+V,- 6! =0, (26)
o= —pI+1, TR/IZ%<2EO®EO_(EO)ZI)7 (27)
V.8 + 2RT (cosh @’ — 1)V,cl — 2RTL sinh @'V, = 0, (28)
¥ = Vol + Voph + 2RT(cosh @ — 1) (Vach + Vye}) — 2RTe) sinh 9" (Vg + V'), (29)
= exp(F0") = L exp(F9°), (30)
et = exp(£), (31)
' = exp(y") (e £ i), (32)

qo = F(c+0 — cfo) = —2ch sinh@o, (33)
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10 = +F®" + RTlogc*® = +Fy° + RT logc) = RT log ¢, (34)
v, [Di exp( T Eo)vycfio] —0, (35)
_ —0
V- [Deexp(59°) (Vb £ v,')] =0, (36)
v, [Di exp(F 8 )(Voc + Vycfil)] —0, (37)
0 3 .£0 0 30\ 20 3° +0 £1
= (exp(F8')ef") + 1" ¥, (exp(F8)ef) = V. {Di exp(F8') (Vic + Vi)
+V, - [Di exp(:FEO)(chfil + Vi) F 7' (Vi + Ve .
(38)
For the clay particles in ¥; we have
vV, (e6,") =0, V, - [e(&,(u') + &.(u”)] =0, (39)
Vool +V,oal =0, ol = a(6.(") + 6,(u)). (40)
Finally the parametrized boundary conditions on 0¥ are
G ou® ou'
Vg on= 2 o_ ou 1w 41
T Y T Y T #1)
¢(6,)n=0,  oln=oan, (42)
(=PI +7y)n = e (6:() + &, (u))n, (43)
Dy exp(F®)V,c* - n=0, (44)
3° +0 +1
Doexp(FP ) (Vier’ + Vyei') -n=0, (45)
D. exp(F0) (V E AV, F B (Ve +V cil)) =0 (46)
xCy¢ yer x&f yHf .

4.2.1. Non-oscillatory variables

We begin by collecting our set of ““slow’ variables, which are independent of the fast coordinate y. From
(39)(a) and (42)(a) we obtain u°(x,y,t) = u’(x, ). Further from (34), (35) and boundary conditions (44) we
also have ¢f%(x,y,1) = ¢f°(x,7) and p*'(x,y,t) = p*°(x,1). Moreover, by adding (34) over cations and
anions we obtain ¢l (x,y,¢) = cl(x,¢) and ¥’ (x,y,7) = y"(x,?). Finally using these two latter results in (28)
also implies V,p? = 0 = p0(x,y,¢) = p(x,7). Thus our set of “slow” variables is {c?, ", u°, p0, ¢, u*°}.

4.2.2. Local Poisson—Boltzmann
Using decomposition (22) and (33) in the Poisson equation (20) along with boundary condition (41)(a)
we obtain the local cell problem
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£800,0° = —¢" = 2Fc) (x,1)sinh@” in Y,

§&6V,0" -n=0 on 0Y

with ¢° and ¢ subject to the local electroneutrality condition

/qodY: —/ odrl. (48)
Yr 0¥y

The above result shows that the Poisson—Boltzmann problem can be extended to the non-equilibrium case
locally provided @ is replaced by the relative potential ¢°. Moreover, an essential feature underlying (47) is
the fact that the Poisson—Boltzmann problem does not survive at the macroscale. This arises from the
scaling factor €? in the Poisson problem (18)(a) which leads to the “shrinking” of the homogenized equation
as € — 0. Thus, ¢°, ®° and E° are highly oscillatory quantities which depend strongly on y. Notably this
fact is consistent with the e.d.l. results at equilibrium where these quantities vary across the pore fluid
domain (Olphen, 1977; Hunter, 1994).

4.2.3. Movement of the ions

In order to derive the macroscopic form of the ion transport equations we begin by homogenizing (37)
and (38) in terms of the auxiliary salinities ¢ and then rephrase the homogenized result in terms of the pair
{cd, w } by making use of the change in Varlables (31). By combmlng (37) with boundary condition (45)
along with the decomposition (22), the closure problem for ¢i! consists in finding the solution of the local
Neumann problems

V, - [Diexp(F9°) (Vi + Viei?)] =0 in ¥,
D. exp(F0") (Vyef' + Vicf?) -n=0 on dY

which together with (31) can be represented up to an additive function é*(x, ¢)
=S 0) Ve (3, 0) = £ exp( £ ) Ve (1) £ € x, ) exp( £ 9 )Vl (x,1) (49)
where f* are auxiliary Y-periodical vectorial functions satisfying the cell problems

V, [Diexp(FQ")(VfT+1)] =0 inY,

50
Doexp(F@")(Vf“+1)-n=0 on dY. (50)

Note that since ®° depends on ¢} through the local Poisson—Boltzmann problem (47), the above charac-
teristic functions exhibit the dependence f* = f*(y, c}).

To derive the homogenized form of (38) define (-)* = |Y,|™" Jy, -dY, (o =f,s) the intrinsic volume ave-
rage operator over the oc-portlon of the unit cell Y. Also denote n, = |Y,|/|Y] (oc =f,s) the volume fraction
of the a-phase and (-) = |Y|_ fy -dY = n,(-)* the average operator over Y. Integrating (38) over Y and

using the closure problem (49) for ci! we obtain

0 —0 —0 —0

3 1 (exp(F @)Y ¢ ﬂ’] F i (exp(FP W -V, ) =V, [(@i exp(F @ )(I £V, f)) V.|, (51)
where the average of the last term in the r.h.s. of (38) vanishes using the divergence theorem along with the
boundary condition (46) and the periodicity assumptions. Furthermore, using the mass balance (23) to-
gether with the divergence theorem and the no-slip boundary condition (41)(b) one can rewrite the second
term in the Lh.s. of (51) as
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C:t(]

—0 —0 =0 30
Fe{exp(FO W -V, @) = iV, - (exp(FP )W) = |f7| . exp(F@ WV - ndl’
fs
+0 0 0
IoFs —o, O Lo Ou —0
_ 1) .ndll = —(V, D).
|Y| ot CXp(:F ) ot n Cr ot < Y CXp(:F )>

Hence, neglecting the convective effects induced by 0u’/0t, the last term vanishes and consequently (51)
reduces to a purely homogenized diffusion equation. Finally, to rewrite (51) in terms of the pair {c}, lpo} we
make use of the generalized Boltzmann transformations (31). Defining the homogenized diffusion coeffi-
cient D, = (7. exp(F¢°) (I £ V,f*))’, we have

2 (nelexp () ) = V. - (@ exp(F )0 £ V) expl £7)(Vach £ V.5

ot
= Voo (2o exp(F ) (I £V ))Vich £ V') = Vi [ (Vach £ v, ).
(52)

The above result is our homogenized diffusion equations with the product n¢D playing the role of an
effective diffusion coefficient. It should be noted that since ¢} reflects the concentration of a bulk solution at
thermodynamic equilibrium with the ions, this quantity (unlike ¢f”) behaves continuously across the in-
terface between the electrolyte solution and an outer saline bath. Thus, (52) is the natural formulation
to describe ion movement where boundary conditions can naturally be imposed. Nevertheless, we re-
mark the usefulness of the auxiliary result (51) as it was obtained within a straightforward homogeni-
zation procedure of classical convection—diffusion equations (see e.g. Auriault and Adler, 1995). After
computing ¢ (x,7), the averaged ion concentrations (c*°) can be recovered within a post-process-
ing approach considering (13) which gives (¢*°) = cﬁ(exp(q:@o))f . This shows that the capacitance term
in the L.h.s. of (52) can also be rephrased as 6(m<ci°>f )/0t and therefore the net charge density is also given

as (¢°) = —2F(sinh @°) = F((c*°) — (¢™°)). Further, defining the macroscopic electric current J° as

J° = Finp [D:(ch‘; + VYY) = D (Vi — cgvjo)}
— Py [(Dj; — D)WV + (D + D )vxﬂ (53)

by multiplying (52) by F, subtracting the results for cations and anions and neglecting the effects of changes
in porosity upon the electric current, we obtain the macroscopic conservation of charge
Hg® S
WSy, (54)
ot

By combining the above result with the electroneutrality condition (47) and recalling that ¢ is time inde-
pendent we obtain the divergence free constraint V, - J* = 0. Further, as we shall observe in Appendix A .4,
the above result together with macroscopic homogeneous Neumann boundary conditions (J° - n = 0) may
lead, in some particular stratified one-dimensional microstructures, to the stronger form of charge con-
servation J° = 0.

4.2.4. Darcy’s law
To derive the macroscopic form of Darcy’s law governing the movement of the electrolyte solution we
begin by combining the closure relations (49) for ¢! with (32) to obtain

Vicy £ AV = exp(3 )Vyef! = V" (Vo) £ V)

in which after adding and subtracting over cations and anions yield
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1 + - 0 + -\ 0y 70
Ve, =V (f T+ )V, + V(T =)Vl

20(;Vy$1 = Vy(f+ _f_)Vng + Vy(f+ +f_)Cngwo-

Using the above results the fluctuating part of the two latter terms of the r.h.s. of (29) can be represented
as

ywhmmﬁ—Uw@-mmﬁiw?}dwﬁmmﬁ—meufj—mmW%vhjjwﬂ
+Rﬂ@mmﬁ—mwutqj—gmwvﬂuﬂﬁwﬁ}
which give
15V — Voph = Vgl + FV.) + GV,
with
F =RT[2(cosh@® — 1)I + (exp(— ") — 1)V,f* + (exp(+3") — 1)V,f ], (55)
G =RTcy| — 2sinh @I + (exp(—9@°) — 1)V,f " — (exp(+ ") — )V, ]. (56)

The r.h.s. of the above result shows that in addition to a bulk phase pressure gradient flow is also driven
by gradients in concentration (chemico-osmotic effect) and streaming potential (electro-osmotic effect).
To derive Darcy’s law we decompose the velocity and pressure fluctuation into their hydraulic, chemico-
osmotic and electro-osmotic components V=V 4+ v + vo and p}, = p, + p; + p,. The pair {v), p)} satisfies
the local Stokes problem only driven by pressure gradient

0 1_y 0
:qunyp - Vypp - prb>
V,-vy=0 in ¥,

0
vg =% on 0¥,

whereas the chemico- and electro-osmotic components satisfy

e Dy VY — V.vl_’ e = FV.cy, e DyVY — Vopy = vaﬁov
V,-v0=0 in Y, V, =0 in¥,
vV =0 on 0Y, V=0 on dY.

Denoting {e;}, (j = 1,2, 3) an orthonormal basis, define the set of periodic characteristic tensorial functions
{,, ke, k. }, with vectorial components {x/, &/, %}, (j = 1,2,3) and the scalars {p,', p.', p.' } satisfying the
following canonical problems

HfAyy'_‘{) -V, = e,
V},-nl/):(), j=1,2,3,
K = 0 on 0Yg

and
ﬂfAy)"fé —V,p.! = —Fe, “fAW'fé —V,p.' = —Ge,,

V, & =0, V, k=0, j=123, (57)
kK, =0 on 0Y, Kk, =0 on 0.
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Hence, exploiting the linearity between the above results we obtain after averaging

o o 0 i —
Vp — E = —vapr with Kp = <Kp>7
(W)= —-KcV,.e) with K¢ = (.), (58)
Wy = —KEVXWO with Kz = (k).
Defining the Darcian velocity v) = (v — du®/d¢) + (v0) + (v0), Darcy’s law is finally written
W = —KpVipl — KcVoc — KV, (59)

The above result resembles in form Darcy’s law derived in Gu et al. (1998a). The first term in the r.h.s.
quantifies flow driven by the bulk phase pressure gradient. This component has been termed the me-
chanochemical force, as it incorporates the difference between hydraulic and chemico-osmotic pressures
V(p® — n°). The middle term is the chemico-osmotic (gradient of the Nernst potential) and is particularly
pronounced when the salinity varies spatially. The last term in the r.h.s. incorporates the electro-osmotic
component which dictates flow driven by streaming potential gradients. The mechano-electrochemical
coupling coeflicients are defined thermodynamically in Gu et al. (1998a) in the spirit of Onsager’s reci-
procity relations. In the proposed formulation they arise naturally and can be computed precisely through
their micromechanical representations (57) and (58). These representations provide important insight in the
mechanisms that drive flow and in the physics underlying the coupling coefficients K. and K. In particular
one may note that the functions F and G are governed by a leading component (first term in the r.h.s. of
(55) and (56)) which is mainly related to the distribution of the electric potential across the pore space. In
addition, one may observe that the fluctuations in the ions concentration (terms related to f*) also influence
the magnitude of the coupling coefficients. For the particular case where the geometry of cell is composed of
two parallel particles (stratified arrangement), since pressure and concentration are constant in each cross
section, their fluctuations in the transversal direction vanish and thus the behavior of {F, G} is only dic-
tated by the variability of @° in the transversal direction. This reproduces the results of Sasidhar and
Ruckenstein (1981) for the case of a stratified arrangement. The additional terms involving the fluctuations
f=in (55) and (56) aim at incorporating the local variability in the concentrations which arises when dealing
with non-stratified arrangements. Further, if the thickness of the e.d.l. is small compared to the interlayer
spacing, the first term in the r.h.s. of (57) for G leads to the well known Smoluchowski model (see e.g.
Shang, 1997; Hunter, 1981; Coeclho et al., 1996) which relates electro-osmotic permeability with the zeta
potential (see Appendix A.2, Eq. (A.7) for details). Concerning the coupling mechanisms that drive fluid
flow it should be noted that, as the streaming potential slows down the6 movement of the fluid and the ions
to conserve charge (see Appendix A.4) the terms involving Vc{ and Vi act in opposite directions therefore
competing with each other. In fact the electro-osmotic component —KzVy leads to fluid movement toward
the regions of higher concentration where the streaming potential is lower (see details in Appendix A.4, Eq.
(A.9)) and therefore it plays the role of a true osmotic term. On the other hand, the chemico-osmotic
component related to —K V¢ arises from the gradient of the osmotic pressure in analogy to the case of
non-ionic solutions (see e.g. Barbour and Fredlund, 1989). The peculiar phenomena of anomalous (reverse)
osmosis (discussed in e.g. GU et al. (1998b)) occurs when the chemico-osmotic component dominates the
electro-osmotic one for a constant bulk phase pressure. When the frictions due to the electro-chemo effects
(which are related to the inverse of the couplings coefficients K- and Kj) are of the same magnitude of the
viscous friction (inverse of the hydraulic conductivity Kp»), Eq. (59) resembles in form the one postulated by
Huyghe and Janssen (1997). In this case both K¢ and K ~ Kp and therefore the movement of te electrolyte
solution is described by only one conductivity coefficient. Further, it should be noted that for particular
microstructural morphologies where the condition V, - J° = 0 may be replaced by J° = 0 (typically the one-
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dimensional stratified microstructure of Appendix A), from (53) the electro-osmotic term can be eliminated
in terms of the concentration gradient. This leads to the form (A.11) of Darcy’s law, which resembles the
one postulated in Barbour and Fredlund (1989) and Kaczmarek and Hueckel (1998), not including the term
related to the streaming potential gradient.

4.2.5. Modified Terzaghi’s decomposition

To derive the modified Terzaghi’s effective principle we average the fluid and solid momentum balances
(26)(a) and (40)(a). Using the divergence theorem, boundary condition (42)(b) and the periodicity we obtain
the overall momentum balance

o
a0 o _ [ (o) inY,
V,-6; =0, whereo; = { (@) in¥,

is the overall stress tensor of the mixture. The modified Terzaghi’s effective stress principle can be obtained
by considering the homogenized constitutive laws for (a7) and (a?). To this end we make use of (16) and
rephrase the Neumann problem (39)(b) and (43) for u' as

Vv, (e6,(u')) =0 in Y,
— [pa(x, ) + I (x,y,8)|n = ¢[6,.(u(x,1)) + &,(u")]n  on OY,

where I is a disjoining stress tensor which incorporates the chemico-osmotic pressure n° and Maxwell
stresses T3

M = 7° — 1), = 2RTc} (cosh @’ — 1) — 1}, (62)

(60)

(61)

When comparing the cell problem (61) for #' with the similar Neumann problems arising in the homo-
genization derivation of Biot’s equations of poroelasticity (see e.g. Terada et al., 1998; Auriault and Sanchez-
Palencia, 1977; Auriault, 1990), the novelty is the appearance of the tensor Hg which incorporates the
influence of physico-chemical effects on the traction boundary condition. Egs. (61) and (62) provide rele-
vant information on the local stress analysis of charged particles. In particular, the one-dimensional scalar
version of (62) for I resembles in form the constitutive equations proposed for the electrostatic compo-
nent of the disjoining pressure of plane-parallel thin liquid films (Derjaguin et al., 1987; Dahnert and
Huster, 1999). By linearity we have

u'(x,3,0) = L0)py(x, 1) + EW)E: (0 (x,0)) + u (x,3,0) + it(x, 1). (63)

The canonical cell problems for the third-order tensor & and the vector ¢ are classical (Auriault, 1990;
Terada et al., 1998; Lydzba and Shao, 2000).

Vv, (€6,(8)) =0 in X, (¢;6,(&))n= —cdIn  on Y, (64)
V, (¢6,(0) =0 inY, (¢é&,(0)n=—In on dY,

where II denotes the unity fourth-order tensor. The novelty in (63) is the appearance of u! which corres-
ponds to the particle displacement component arising from the traction induced by the physico-chemical
tensor I1)

Vv, (e&,(u)) =0 in Y,
(e6,(ul))n = —TI)n on dY.

¥

(65)

Denoting C, = (¢;(II + &,(£))) the macroscopic elastic modulus (fourth-rank tensor) by averaging the
constitutive equation (40)(b) for ¢’ and using (63) we obtain

(63) = e6.(u") + (6, (D)py + (€6, (). (66)



C. Moyne, M.A. Murad | International Journal of Solids and Structures 39 (2002) 6159-6190 6175

By rewriting the constitutive equation for ¢ (27) in terms of p{, using (16) and (62) we get after averaging
(6?) = —ngpdI — (I1). Using this result in definition (60) along with (66) we obtain

6) = —ap) + C6,(u) — TI°, (67)
where a = npl — (¢;6),(¢)) is the Biot coefficient for the particles and
° = (IT)) + a1y with TI§ = —(¢,6,(u)))’, (68)

where ny = 1 — ny is the volume fraction of the solid (recall that (-) = ng(-)"). Eq. (67) is the macroscopic
form of Terzaghi’s decomposition for the compacted swelling clay. In addition to the pore pressure p_ and
contact stresses C &, (u°), it includes the macroscopic physico-chemical tensor IT° which incorporates the
influence of physico-chemical effects upon the overall stresses of the clay clusters ¢%. From (68) this
quantity may be decomposed into the averaged counterpart of l'[?, (which from (62) is the sum of chemico-
osmotic and Maxwell stresses) and the additional component 1'[2, which consists of chemical stresses in the
particles due to the traction induced by IT) in (65). Since IT) represents stresses acting effectively in the solid
phase, it may be viewed as the physico-chemical component directly responsible for the expansion of the
aggregates. Whence, thus quantity shall be referred to as swelling stress tensor as it plays the role of a
tensorial generalization of the swelling pressure to incorporate deviatoric effects. This alternative way of
expressing the modified Terzaghi’s principle resembles in form some heuristic modified effective stress
principles for clays (see e.g. Sridharan and Rao, 1973 or Lambe, 1960). Historically, physico-chemical
forces have heuristically been modeled at the macroscale through the addition of a term to Terzaghi’s
principle which measures the effect of net repulsive (RI) and attractive (AI) forces between particles. This
stress is commonly denoted by (R — 4)I (see Sridharan and Rao, 1973). In Lambe (1960)), effective stresses
are defined as the difference between total stress and pore pressure whereas in Sridharan and Rao (1973)
effective stresses are nothing but the matrix contact stresses (see Hueckel, 1992a). It should be noted that
our macroscopic modified Terzaghi’s effective stress principle (67) is capable of reproducing both Sridharan
and Rao and Lambe’s parallel connection models. The former can be recovered by simply defining effective
stress as the contact elastic component C&,(u’) whereas the latter as C&,(u°) — I1. Thus,(67) is a first
rational attempt at a rigorous micromechanical derivation of the above heuristic modified Terzaghi’s
principle in the case where 4 = 0.

In the case of stratified arrangements, an alternative description of the decomposition (68) can be
adopted where the scalar versions of ITj and IT) can be precisely identified with Derjaguin’s microscopic
disjoining pressure (Derjaguin et al., 1987) and Low’s macroscopic swelling pressure (Low, 1987) (see
Appendix A.5).

4.2.6. Overall mass balance
Finally we derive the overall macroscopic mass balance. By averaging (24), using boundary condition
(41)(c) together with the closure equation (63) and the divergence theorem we get

(V.- ¥ = —(V,v") |Y|/v ndF——|Y|/
:<Vy-aa";>=<Vy~§>:§t(() (v, - c>a”" <Vy-aa";lf>»

where 4 : B = tr(AB") denotes the classical inner product between tensors. By rewriting the above result in
terms of the Darcian velocity v we obtain

0 ap ou!
. 0 * ., £ b . T
V.- vp+a .at(@x( u’) =V, C) <V_v o >, (69)
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where a* = nel — (V, - &). Further, by pursuing the analysis presented in Auriault and Sanchez-Palencia
(1977) one can show the classical relation a* = nel — (¢;6,({)) = @ commonly adopted in Biot’s theory of
poroelasticity. Finally, one may note the appearance of the additional last term in the r.h.s. of (69) which is
related to the compressibility of the solid phase due the forces induced by the disjoining stress T1).

4.2.7. Mass balance of the fluid phase

To close the system it remains to derive a mass balance for the fluid phase which shall be used to
compute the porosity n;. To this end we make use of the classical Reynolds transport theorem applied to a
general scalar function f defined on ¥;. Denoting du/0¢ the interfacial velocity and using the no-slip con-
dition (10) we have

o) Jor\ 1 ou i
M _ (SN[ -  ndr
at < at > |Y| anSf at g |Y| 0Ygs fv g

which for f =1 gives

an 1

— = v-ndl.
o Y] Jox

Further, using the spatial averaging theorem (Whitaker, 1999) for the mass balance of the incompressible
fluid phase (2) yields

(V-v) =V -(v) v-ndl =0.

+ JE—
Y] Jox,
Combining the above results we get

ai’lf
§+V~<V>—O.

Using the asymptotic developments the above relation can be written as

O (V) () ele)) = 00

Hence, recalling that averaged properties are independent of y we obtain at (1)

anf
MV, W) =0.
5 TV (V)
Finally, by rewriting the above result in terms of the Darcy velocity v} = (v’ — 0u’/0¢) and neglecting the
convective effects induced by 0u’(x,)/0t we obtain
ong ou’

— 4V, -V V, - — =0.
o TV Ve

4.3. Summary of the two-scale model

Denote {{, &, k,} and {k,., k.,f",f "} sets of the aforementioned characteristic functions with the former
set depending on cell geometry and the latter also depending on the salt concentrations ¢ (x, 7). The two-
scale model consists in finding the macroscopic variables {69, u, p2, v%, 2 n;} satisfying
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V. 6% =0,
0
o) = —ap) + C&, (1) — II',
-0
= _KPprg — KcVXCg — KEVXl// y

0, 6p 07,
ot &:(’) = s )t T (70)

% (nijcg) =V, [nfD; (chg + cgv,ﬂo)} ;

67’!{ allo .
§+VX<V%>+VI{VX§:0 IHQ,

V. v ta:

where the component IT° and the coefficients {a, C, Kp, K¢, K¢, B, 7,, D%, G,} admit the micromechanical
representations in the unit cell Y

I’ = (7’1 — ;) + nJ1Y, n° = 2RTc)(cosh @’ — 1)),
= 0B S B - (), T = (b, (W)

a=nel — (¢;6,()) =nel — (V, - &), Cs = ((I + 6,(8))), |
Kr=(x). Kc=(x), Ke={x), f=(V,-0), (70
15} 0 -

Lo (v S b= (e + VY

G= = (exp(¥9"))’

with the set of local variables {¢°, E°, u!} satisfying the Neumann problems

800, 0° = 2F) sinh @,
E'=-V, " in ¥,
E&HE" -n=—0 on dY,

V, - (€6y(u)) =0 in ¥,
(cSo‘ (ul))n =—( OI —10)n on 0Y.

s

(72)

An essential feature of the above two-scale formulation is the communication between the macroscopic and
microstructural behaviors of the swelling medium which appear naturally in the couplings between global
and local unit cell problems. In this approach the information on the microstructural morphology of the
swelling medium is incorporated in the two-scale model through the geometry of the unit periodic cell and
the magnitude of the local parameters (such as e.g. the surface charge density o). Different cell geometries
lead to different solutions of the closure problems and therefore to different homogenized coefficients.

In what follows we shall consider a particular case of the two-scale model wherein the particles are
isotropic and nearly incompressible with respect to the coupling problem (64)(b) for the coefficients « and f3
such that ¢,6,({) = —I and V, - { = 0. Hence we have (¢,6,({)) = —nsl, & = I and f§ = 0 which implies that
the overall mass balance reduces to V, - v} + (ddiva’/dr) = 0. This reproduces the classical Biot’s poro-
elasticity results where the coefficient i governs compressibility effects whereas « is ruled by the ratio be-
tween the bulk modulus of the solid and matrix (see e.g. Biot and Willis, 1957). Moreover, under the same
nearly incompressibility assumption we also consider V, -u! =y =0.

The above system is supplemented by macroscopic initial and boundary conditions. Denoting
I' =T,UTI,, with I'} and I'; disjoint subsets of I" and N the macroscopic unit outward normal, we consider
the following set of boundary and initial conditions
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div,u = 0; cg =c¢ InQ, t=0,
o6N=h vp - N=0, d=c; J'"N=0 onl}, (73)
u=0, p=0; chg~N:J0-N:0 on I,

where ¢y and ¢* denote respectively prescribed concentrations and & denote a traction condition. The in-
terface I'; corresponds to a loaded mechanically impermeable base with prescribed concentration and
electric current whereas I', corresponds to a rigid, permeable wall with free drainage, though impermeable
to diffusive ion transport. Note that using the definition (53) for J° implies VXW) -N=0onT),

5. Variational formulation and finite element approximation

We now turn to the approximation of the two-scale model by the finite element method. To this end we
begin by considering the variational statement of the problem. Denote L*(Q) and L?(Y;)(i = f,s) the usual
spaces of square integrable scalar valued functions equipped with the inner products

U,g)oz/gfgdfz g € 13(Q),
(ﬂg)lz/y_fng Vf,g e L*(Y), i=1s

and also let H'(Q) x H'(Y;) be the usual subspaces of L?(Q) x L*(Y;) given by
H'\(Q) = {f € 1*(Q),Vf € (1}(2))’},
H'(Y) = {f € (%), Vf € (*(¥))'}.

Considering the boundary conditions (73), introduce the appropriate function spaces for the macroscopic
unknowns
U={ve (H'(Q)’, v=0 on I},
V={qeH(Q), q=0 onl,},
w'={weH (Q)
wr={weH (Q)

, w=c¢, onl},
, w=0 onl,}.

The variational formulation for the macroscopic problem (70) (with « = I and § =y, = 0) consists in: For
each ¢ € (0,00), find {u°(¢), pd(2), (1), 4" ()} € U x V x W' x H'(Q) such that:

(Cs6(u),8:(v)), — (po, divyy), — (T, &,(v)), = F*(v) W e U,

. od° —
(dwxa—”t,q) + (KpVoph Vag), + (KcVich, Vog), + (KeVd' . Vag) =0 Vg eV, (74)
0

0 . —0
" (nfGicg, W)o + (nfDi (chg + eV, ),wa)o =0 Ywe W’
with the reduced set of coefficients {c¢;, Kp, K¢, Kr, D, IT°} represented by the micromechanics in (71) and
the porosity nr and the linear functional F*(v) given by

an 0 allo
T v N VS Fr(y) = -vdr.
o V.- vh — 1V, o (v) /r, h-vd (75)
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In addition, the weak form of the local unit cell problems (72) for ¢° and u! can be stated as: For given
(x,7) and 1Y find {@°(¢),u’ (1)} € H'(¥;) x (H'(Y,))’ such that:

&8 (V,0", V,v), + 2Fc) (sinh @’,v), = f(v) Vv e H'(Y), (76)
(e6,(u}), 6,(0)), = g(x) Vrin (H'(Y,))’ (77)
with
0= [ wdr, go)=- [ Wnwar, W=rr-g,
05 Y

5.1. Fully discrete backward Euler—Galerkin formulation

We now discuss the approximations in time and space of the above variational formulation. In what
follows we discretize the macroscopic system (74) by the Galerkin method coupled with a time integration
scheme. We consider a particular numerical example of a stratified clay whose microstructure is composed
of long parallel particles. Moreover, we make use of the assumption of low electric potentials where the
Poisson—Boltzmann is approximated by the Debye-Hueckel linearized form (see Appendix A, Eq. (A.1)).
Under these assumptions the simplified form of the local cell problems (76) and (77) exhibit analytical
solutions (see Appendix A for details). Consequently the discretization technique is applied to the mac-
roscopic system whereas analytical solutions of the local cell problems are used to update the macroscopic
parameters in (74) at each time. Thus, Let Ar be a fixed time step and denote {U,, V;, W,!, W2, X,} the
families of finite dimensional subspaces of {U,V, W' W? H'(Q)} containing continuous, equal order
piecewise polynomials on triangles or quadrilaterals of a partition of Q of degree k. Denoting y™ the ap-
proximation of a variable y at ¢, = mA¢, the backward Euler operator 0, approximates the time derivative
by the quotient d,)" = (y" — " ")A¢~!. The fully discrete scheme adopted herein is based on the classical
backward Euler Galerkin method defined as: For each time ¢ = ¢, = mAt (m > 1), find the macroscopic
unknowns {u)", plr O 0"y € U, x V, x W' x X, satisfying

(C(U)™), 6 (Vi) — (P divevy), — (I (i), = F*(vi) V¥, € Uy, (78)

(divea, qn), + AL(KEV.PI Vi), = —At(KEV. 2, V.gs), — At (ngvijf”‘, quh)o

+ (divx ug(’"*l)’qh)o Yq, € Vi, (79)

m m _,0m m yxm m m Om m— m— 0(m—1
(nf Gi cgh,wh>o + At(nf DY (chgh :I:cgh V., ),wah>0 = (nf lei,( l)cbi ),wh)o Yw, € W;f,
(80)

where diva)® =0 and ¢ =, In addition, at each time step, the linearized set of coefficients

", K », K7, K7, D"} are given analytically by the simplified micromechanical representations presented
in Appendix A.

Due to the strong dependence of the macroscopic coefficients on the salinity ¢{ and porosity n; through
the micromechanical representations, the aforementioned fully0 discrete formulation leads to a system of
non-linear algebraic equations for the unknowns {u?", p, ¢% " }. For each time #,, the system is linearized
using a Picard’s relaxation type algorithm. After convergence is achieved for a given tolerance we proceed
to the next time step. For each iteration, the resultant linear system is solved in a staggered fashion wherein
(78) and (79) are first solved for {u)", p)"} with the r.h.s. evaluated at the previous iteration. Subsequently
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the solution of the diffusion equations (80) for {c)" , } is computed with the coefficients calculated from
the previous iteration.

6. Clay liner application

We consider an example concerning contaminant migration and electrokinetic attenuation through a
compacted clay liner underneath a sanitary landfill. The problem consists of a geocomposite liner (de-
scribed in the sense of Smith (1999)) composed of a volume of waste and a geomembrane overlying a
compacted clay liner which lies immediately above a saturated aquifer (Fig. 1). The geomembrane corre-
sponds to the top boundary I'; representing an impermeable barrier to fluid flow, whereas the boundary I,
represents a rigid and permeable interface between the liner and the aquifer. For simplicity we consider only
chloride and sodium migration through the liner with a given bulk concentration of the leachate ¢} = ¢, on
the top boundary I';. In addition to the chemical aspects induced by the diffusion of Na* and Cl~ we also
consider the settlement due to the load induced by the placement of the waste in the landfill Smith (1999)
which is measured by the traction & in (73). Thus, the geomembrane transfers both chemical and me-
chanical consolidation from the upper boundary. For simplicity we assume that the contaminant is placed
at the landfill at the same time of the beginning of the consolidation process. The bottom rigid interface I,
between the liner and aquifer, though permeable to fluid flow, is considered a barrier for the diffusive
transport of the leachates.

In Fig. 1 the origin of the longitudinal coordinate axis x is located at the top of the soil liner. Denoting L,
the height of the liner, the boundaries I'; and I'; correspond to the locations x = 0 and x = L, respectively.
In the idealized stratified microstructure the clay particles are oriented parallel to the longitudinal axis and
therefore flow and transport take place only in the direction of the layers parallel to the x coordinate.
Conversely, the disjoining stress tensor reduces to a scalar disjoining pressure 1% which acts in the normal

c% T Cy
WASTE
geomembrane

U r

H h 1 microstructure
seraniled ! e lany Gl

|| m “‘ m m rigid and free drainage

aquifer r,

Fig. 1. Geocomposite liner and a zoom of the stratified microstructure composed of parallel particles.
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(or transversal) direction parallel to the unitary vector n normal to the clay surface (Fig. 1). Further, in the
particular case of stratified microstructure, one may use the arguments of the e.d.l. theory to show that IT,
is constant in the interlayer spacing (see Appendix A.5, Eq. (A.15)). Hence, the one-dimensional solution of
the unit cell problem (65) in the normal direction is ¢;&,(u}) = —I157 @ n which shows an unique non-zero
normal compression component equal to the disjoining pressure. By averaging this result and using defi-
nition (68)(b) we obtain IT) = ITon ® n. Thus, defining the swelling pressure 13 as the projection
I} = §n - n we then have ITy = IT). This result reproduces the classical Derjaguin’s statement that for a
parallel particle arrangement, the swelling pressure is nothing but the intrinsic averaging of the disjoining
pressure (see Derjaguin et al., 1987).

A particular consequence of the one-dimensional stratified microstructure is that the macroscopic co-
efficients reduce to scalar quantities which dictate the behavior of the swelling medium in the axial direc-
tion. Conversely, the magnitude of these coefficients is strongly dependent on the e.d.l. and the solution of
the linearized Poisson—Boltzmann problem in the transversal direction, normal to the clay surfaces. Thus,
our numerical example is ruled by two different sets of macro/micro coefficients acting in orthogonal di-
rections. In this configuration, the information provided by the microscopic e.d.l. is used to quantify the
macroscopic parameters at each time. Due to the well known susceptibility of the diffuse double layer to
change in the salinity ¢}, as the concentration of the leachate evolves in time, particle separation decreases
leading to a collapse of the fine pores and to a reduction in porosity. By considering a transversal fixed
overburden load Pr, the swelling pressure is given as I1$ = I15 = Pr — p. This result represents a simplified
form of the momentum balance in the transversal direction (recall that since the particles are parallel, the
transversal Terzaghi’s stress component vanishes). After computing {u”, p%", ¢ )"} at each Picard ite-
ration this result can be applied in conjunction with the well known representation for I} in the Debye—
Hueckel approximation of the e.d.l. (Eq. (A.15)) leading to a relation which can be used to update the
porosity n; at each iteration. In the numerical results presented next, we consider that changes in the po-
rosity ny are mainly dictated by changes in the interlayer spacing H in the transversal direction. When
combined with the mass balance (75) this also can be used to compute the transversal component of the
displacement of the solid phase.

6.1. Numerical results

In what follows the subsequent numerical simulations aim at illustrating the potential of the two-scale
approach in providing an accurate description of the decrease of the micro-porosity (due to the contraction
of the e.d.l.) with the evolution of the brine concentration. The figures display the evolution of the di-
mensionless macroscopic quantities during the contaminant migration through the liner. The corres-
ponding dimensionless quantities are denoted by the superscript “*”” and are defined in Appendix B. Fig. 2
depicts the spatial variation of the dimensionless salinity c; = ¢} /c. with the axial coordinate x* = x/L, for
different times ¢* = (A + 2u,)Kprert/L2, Where Kp is the value of Kp initially (see Appendix B). Since an
increase in cj, (equal to one in the top of the liner at x* = 0) leads to the suppression of the double layers, the
locations of high concentration are associated with regions of low porosity as depicted in Fig. 3. As the
concentration of the contaminant evolves in time the porosity at the bottom of the liner gradually de-
creases. The steady state configuration is characterized by a constant unitary concentration associated with
an uniform low porosity. Also, note that as the velocity vanishes on the top of the liner due to the no-slip
condition with the geomembrane, the pore pressure next to the gecomembrane pp(x* = 0,7 = 0") decreases
locally to give rise to a local sharp pressure gradient which opposes the abrupt concentration gradient at
t = 0 in the one-dimensional form of Darcy’s law (see Appendix A.2, Eq. (A.11)). Since IT} = P — pY, this
local boundary layer effect implies in an increase in the disjoining pressure close to x = 0 which also leads to
an abrupt porosity drop at ¢t = 0 even beyond its state value. As times evolves this sharp boundary layer
effect dissipates and the porosity approaches the steady state value associated to the unitary concentration.
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Fig. 2. Spatial distribution of the concentration for different times.
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Fig. 3. Spatial distribution of the porosity for different times.
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Fig. 4. Spatial distribution of the streaming potential for different times.
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This stationary value of n; is much lower compared to the initial one but slightly higher compared to the
value nl(x = 0,7 = 07") (see Fig. 3). Y

Fig. 4 depicts the spatial variation and time evolution of the dimensionless streaming potential iy , which
is computed within a post-processing approach using (A.9). This quantity is calculated up to an additive
constant which is arbitrarily set equal to zero at the top of the liner. As expected, its negative gradient is
pointing upward which shows that electro-osmotic component slows down fluid flow and cation migration.
As time evolves the gradient of the streaming potential decreases and vanishes at steady state.

7. Conclusion

We have presented an homogenization procedure for derivation of a macroscopic model for montmo-
rillonite expansive clays. The model was derived by scaling up the pore-scale description which consists of
the electro-hydrodynamics coupled with Nernst-Planck equations and the Poisson-Boltzmann problem
which govern the fluid movement, ion transport and local electrostatics in the electrolyte solution. This led
to a two-scale model where the macroscopic behavior appears somewhat related to the response of the
microstructure. The essential feature underlying the micromechanical formulation proposed herein is the
alternative way of representing the macroscopic parameters such as the swelling pressure and the electro-
kinetic coefficients which commonly appear in the framework of Onsager’s reciprocity relations. This
provides a new comprehensive understanding of the physics underlying electro-chemo-mechanical coupling
phenomena and can be used to elucidate the somewhat obscure macroscopic constitutive behavior of the
medium. The two-scale model was discretized by the finite element method. Numerical results were pre-
sented in a particular example concerning contaminant migration through a compacted clay liner under-
neath a sanitary landfill. A particular stratified arrangement for the clay was considered where the unit cell
problems were solved analytically when the electric potential is governed by the linearized Poisson—
Boltzmann problem. Numerical simulations illustrate the relevance of the two-scale approach to improve
the prediction of consolidation of chemically sensitive materials and their relation with the pore-scale
behavior. Clearly this provides new insight in the constitutive theory of expansive porous media.

Further work is required to extend the model to media characterized by two levels of porosity (micro-
and macro-pores) where the movement of the bulk phase water in the macro-pores is also included. This
can be accomplished within the framework of a three-scale approach where an additional level of averaging
is required to incorporate the bulk fluid (see e.g. Hueckel et al., 2001). It has been shown by Murad and
Cushman (1997, 2000) and Murad et al. (2001) that the development of three-scale models lead to homo-
genized microstructure models of dual porosity type for deformable porous media where the two-scale
homogenized system exchanges mass and momentum with the bulk fluid in the macro-pores. Finally, still
within the applications of two-scale models other examples can be pursued such as the sensitivity analysis of
the stability of the micro-pores with the reduction in the dielectric constant of the solvent when water is
replaced by hydrocarbons. The work of Fernandez and Quigley (1985) provides a comprehensive experi-
mental framework which can be exploited to validate the theory proposed herein. These relevant afore-
mentioned issues will be subject of future work.
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Appendix A. Stratified clay microstructure composed of parallel particles

In this Appendix we present the analytical solutions of the micromechanics (71) and (72) in the case of a
stratified clay microstructure composed of parallel particles, when the local electric potential ¢° is governed
by the linearized Poisson-Boltzmann problem.

A.1. Debye—Hueckel approximation

Denoting n and ¢ the unitary vectors normal and tangential to the parallel particles, the microscopic
electric field acts normal to the solid, i.e. E° = E%n. Assuming the range of low electric potentials |¢°‘ < 1,
the exponential terms in the r.h.s. of (47) can be linearized leading to the well known Debye-Huckel
approximation. Denoting ES = FE°/RT, the one-dimensional version of the linearized Poisson-Boltz-
mann problem (47), (posed in the interlayer spacing —H (x) < y < H(x)), reads (see Hunter, 1994; Olphen,
1977).

9" _ 9" o _ d7
dyr Ly’ dy’
E =0 aty=0, (A1)
—0 oF
T TEeRT YT

where Lp = (5éORT/(Zcmg))l/2 is the Debye’s length. The solution {EO,ES} is given as:

o o  cosh(y/Lp) —0 ¢  sinh(y/Lp)
= . , E = . (A.2)
2FcLp sinh (H/Lp) " 2RALY sinh (H/Lp)

A.2. Darcy’s law

We now derive the analytical expressions for the longitudinal scalar components {Kp, K¢y, Kz, } of the
coefficients {Kp, K¢, K¢} in Darcy’s law (59). To this end we consider the one-dimensional version of the
Stokes problem (55). Standard arguments commonly used in Poiseuille type flows show that pressure and
concentration are constant over the cross section and therefore the fluctuations p}, c¢f' and f* in the
transversal direction vanish. Hence, in terms of the axial velocity 1°(y) the one-dimensional version of (56)
reads

RN apb ac) —0 x//

_gn0cd d2 0@¢
fay = = 2RT(coshg’ — 1) = ax — 2RTc) sinh @ =~ _ rT(")? L _

x of dy ox

(A.3)

where the one-dimensional version of the Poisson—Boltzmann (47) has been used and the exponential in the
first term in the r.h.s. has been linearized up to second order. Denoting u’(x, ¢) the x-component of the solid
displacement, the above problem is supplemented by the boundary conditions v°(y = H) = du’ /0t and
(0°/3y)(y = 0) = 0. By averaging (A.3) over the cross section, the coefficient Kp, = H?/3y; is the averaged
relative velocity (00 — 0u’/0f) with 9p?/dx = —1 and 0c)/dx = Y /dx = 0. Furthermore, the chemico-
osmotic component K¢ is the averaged of the velocity ¥ satisfying

azl)g —0\2
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Integrating the above result and using (A.2)(a) for @’ we obtain
2H? 1 L} 2H\ L 2H
Koy = —— 6, 5 {——&——Dz{cosh (—) — 2P §inh (—)]} (A.4)
2u8&c) sinh” (H/Lp) L 6 8H Lp 2H Lp
Finally, adopting the same procedure, the electro-osmotic permeability K is the averaged of the velocity
component satisfying

Y . d’¢®  E&RT d°9"
K »  Vdy F  dy?

in which after integrating twice and making use of the symmetry at y = 0 and no-slip condition at y = H
gives

o’ E&RT dop° E&RT _, o
Mfa— F d—y’ v (v) = va (@' (v) —9'(H)).
Hence, after averaging and using (A.2)(a) we have
L E&RT [ _, 0 §8RTo 1 H
— = () -9 =" (1-—— — |H A.
H/o v, dy HﬂfF/O (@' () —9"(H))dy P (1 7, coth (LD) > (A.5)
which yields
O'LD LD H
Kg, =——|——coth | — | |. A.
w5 [ oo (3] (r0

The one-dimensional solutions discussed here resemble in form those presented in e.g. Gross and Osterlé
(1968), Fair and Osterlé (1971), Sasidhar and Ruckenstein (1981, 1982) and Yang and Li (1998). Further,
denoting { = ¢(H) the zeta potential, when the thickness of the e.d.l. is small compared to the interlayer
spacing H, the Helmholtz—Smoluchowski model can be recovered from (A.6). Under this assumption the
first term in the integral in (A.5) involving 9°(y) is neglected compared to the second. We then have

g&RT [7 _ EERT _ €&l
Kp = / P (H)dy = ———9"(H) =— (A7)
HuF J, wF H

which is nothing but the Smoluchowski formula (Hunter, 1981; Coelho et al., 1996; Shang, 1997).

A.3. Movement of the ions

We now derive the one-dimensional linear version of the homogenized diffusion equations (52). To this
end denote &, the scalar longitudinal diffusion coefficients and define o = —@) = —0/2Fc)H. Setting
fT=f"=01in (71) and linearizing the exponential in the homogenized diffusion coefficient we obtain

D;x = Div<exp($¢0)>/’ ~ Di(l + OC)

Thus, the linearized one-dimensional form of (52) reads

d d ot oy
b1 £0)] == [nfDi(lj:oc)<aC;j:cgéi>]. (A.8)

A.4. Electroneutrality condition

In the case of a stratified microstructure, further consequences of the electroneutrality condition (48)
combined with charge conservation (54) can be explored to eliminate the streaming potential in terms of the
bulk concentration in both Darcy’s law and the diffusion equation. The one-dimensional form of (55) reads



6186 C. Moyne, M.A. Murad | International Journal of Solids and Structures 39 (2002) 6159-6190

og”y
ot Ox
By combining the above result with the local electroneutrality condition (48) (with ¢ constant) leads to

0J°/ox = 0. Further, together with the homogeneous boundary conditions for the electric current in (73)
this yields J° = 0. Using this result in the one-dimensional linearized form of (53) we get

ne =0.

Nt—N- =0 WithNianfD+(1i“)<6aCbi gaé//>
X

The above constraint leads to the following relation between the gradients of the bulk concentration and
streaming potential

o (1+a)D, — (1 —a)D_ 1acb

b A A.

ox (14+a)D. + (1 —a)D_ ) ox (A9)
in which when combined with (A.8) and adding the result over cations and anions leads to

0 0 0 (I+a)(1—o)D D_ 6cb

— =2— Al

5 ) =25 | "0+ oD, + (1 —o)D_ x (A.10)

Further, the same procedure can be adopted to eliminate the electro-osmotic component in the one-
dimensional form of Darcy’s law. This yields

oS _ apy effacb
(o) = —Kpo 2 = K& o (A.11)

with
1 1+a)Dy — (1 —a)D_
Keff K 7K

SN+ a)D, + (1 —a)D_ "

It should be noted that the sign of the effective osmotic coefficient K& may change according to the
magnitude of the terms in the r.h.s. of (A.12). In the flow regime characterized by K&' > 0, the chemical
component of the filtration velocity is dictated by the so-called anomalous (reverse) osmosis which follows
the negative of the concentration gradient. Conversely, when the electro-osmotic component (last term in
the r.h.s. of (A.12)) prevails, flow is governed by a regular osmosis process, following the concentration
gradient.

(A.12)

A.5. Modified Terzaghi’s decomposition

We now derive a sharper representation for the modified Terzaghi’s decomposition (67) in the particular
case of stratified microstructure. From (27)(b) and (62) the reduced representations of 13, and HS are

0 _ 880 ((-0y2 o p0y2
&= (B nen—(E)ror),

o_ [ 0 %8 10 €80 10
In, = (n —2(E)>n®n+<7t +2(E)> ®t.

The electrostatic component of the disjoining pressure HS is defined as the projection of l'[?,n onto the
normal direction to the solid phase, i.e. 1T} = l'[gn - n (Derjaguin et al., 1987). We then have

(A.13)

H37H2n®n+<17 +880(E))t®t (A.14)
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in which when combined with (16) and (A.2) and linearizing up to second order gives

t
!

0

my=n"—= (E)* = 2RTc)(cosh @ — 1) — 70 (E°)?
o~ 2
N 0,—02 €80RT)" —o0.2
~ RTcy (@) —T( ")
B RTo> coh? ( y ) EERT o ( y ) (A.15)
4R L3 sinh? (H /Lp) Lp) 2F2L12 Lo
RTq? o2

B 4F20L3 sinh®(H /Lp) 285 sinh’ (H/Lp)

The above equation reproduces the well known result of the e.d.l. where IT] is constant in the interlayer
spacing. Further, applying (A.13) to the normal and using (A.15), the traction boundary condition in the
cell problem (65) for u! reduces to ¢,&,(u)n = —H?,n (constant). Recalling definition (68)(b) for I, the
averaged solution of (65) for the parallel particle arrangement is Hg = Hgn ® n. Thus, defining for swelling
pressure 1) as the projection IT2 = Iyn - n this yields IT) = I1Y. It remains to obtain the physical inter-
pretation of the tangential component of the tensor I1 in (A.14). To this end we combine this result with
the constitutive law ) = —p°I + 13, = —(p) + n°)I + 13, = —pI — I to obtain

ol =-pnan-ptat
with the normal and tangential components given as

p=r+ Iy, p =y G+ e (E).
The interfacial tension of the electrolyte solution vy is defined as the excess quantity (see e.g. Toshev and
Ivanov, 1975)
H H H H ) ~H
b= [ wt-an=— [ ot -man- [ oh-man=-in [ Eran- [ ma
—-H —-H —H —-H —-H
(A.16)

Denote A the total surface area of the particles within each unit cell and ag = |A|/|Y| the specific area
density per unit volume. Using (A.16) in (A.14), the averaged disjoining tensor (IT}) can be represented as
(recall that I1% = IT% = constant)

(M) = mIln @ n — agyt @ t. (A.17)
Hence, the macroscopic physico-chemical tensor IT° in (68) can be represented as
° = nJ1§ + (M) = In @ n — agyt @ t. (A.18)

The above representation for II” in the stratified arrangement aims at decomposing this quantity into two
components acting normal and tangential to the solid surface. In contrast to the tangential component
ag)t ® t, the normal one I19n ® n is an effective quantity as it is directly responsible for the expansion/
shrinking of the particles. Thus, when combined with (67) the decomposition (A.18) furnishes an alternative
form of expressing the modified Terzaghi’s principle wherein physico-chemical stresses appear decomposed
explicitly into their effective and non-effective components.
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Appendix B. Dimensionless unknowns

In the analysis that follows we rewrite the previous one-dimensional system applied to the clay liner
example in dimensionless form. The corresponding dimensionless variables are defined relative to reference
quantities. Denoting the former set by the superscript * and the latter by the subscript ref, we then have e.g.
¢y = cg/cref, J pg /Drets IT" = Hg/pref. To simplify the following notation and reduce the number of
subscripts, the longitudinal component of a vectorial quantity is denoted with the same symbol of the
corresponding vector (or tensor) without the boldface. For the clay liner example the reference values
{Crer, Prer } are selected as the components which appear in the non-homogeneous boundary conditions (73)
on I'j, i.e. ¢yt = ¢, and pyr = h. The dimensionless streaming potential is defined as y* = = F Wo/RT. In
addition, the dimensionless macroscopic coordinates are defined as x* = x/Lyr and y* = y/Ly, Where Ly is
chosen as the macroscopic height of the liner L..s = L. Also the reference interlayer spacing H,s is chosen
of the value of H initially before the chemo-mechanical consolidation. Whence, the reference hydraulic
conductivity is given as Kper = H2;/31;. Further, defining the dimensionless time ¢* = (4 + 2p)Kprert /L2
and the longitudinal components of the Darcy velocity and solid displacement as v}, = UODLref / (KpretPrer) and
u* = u(As + 2u,)/ PrerLrer, the unidimensional dimensionless forms of Darcy’s law along with overall mass
balance and equilibrium condition read

op;, & ocy,

v = —K; o Cox

vy, O _0 (B.1)
Ox*  Ordx* ’

o*u* B opy 0

ox*2  Ox* ’

where
K= Kp 7 - CrerKE" .
Kprer KpretPrer

In the last equation in (B.1), the effects of the disjoining pressure were not included as it only acts in the
transversal direction in the stratified arrangement. Finally, the dimensionless ion diffusion equation (A.10)
is given by

O(ngc*) 0 , oc*
a o <"fD 6x*>

with
B [ (I+a)(1—a)Dy2_
B I<Prefpref(/1 + 2#) (1 + OC)DJr + (1 - O()D, '

*
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